
Pis'ma v ZhETF, vol. 93, iss. 4, pp. 213 { 216 c 2011 February 25Numerical study of Fermi-Pasta-Ulam recurrence for water waves over�nite depthV.P.Ruban1)L.D.Landau Institute for Theoretical Physics RAS, 119334 Moscow, RussiaSubmitted 15 December 2010Resubmitted 14 January 2011Highly accurate direct numerical simulations have been performed for two-dimensional free-surface poten-tial ows of an ideal incompressible uid over a constant depth h, in the gravity �eld g. In each numericalexperiment, at t = 0 the free surface pro�le was in the form y = A0 cos(2�x=L), and the velocity �eld v = 0.The computations demonstrate the phenomenon of Fermi-Pasta-Ulam (FPU) recurrence takes place in suchsystems for moderate initial wave amplitudes A0 . 0:12h and spatial periods at least L . 120h. The time ofrecurrence TFPU is well �tted by the formula TFPU(g=h)1=2 � 0:16(L=h)2(h=A0)1=2.Many nonlinear dispersive waves are known to ex-hibit the Fermi-Pasta-Ulam (FPU) recurrence, when a(�nite-size) system nearly repeats its initial state af-ter some period of evolution. For the �rst time, thisphenomenon was observed in the famous numerical ex-periment [1] with one-dimensional (1D) lattices of non-linear oscillators. The impact of that observation onthe subsequent development of nonlinear science wasvery deep. In particular, it resulted in the discoveryof solitons by Zabusky and Kruskal [2]. Since then, theFPU recurrence and related phenomena were studied inmany physical contexts (see, e.g., [3 { 13] and referencestherein).In general, the FPU recurrence takes place in a sys-tem if its dynamics is nearly integrable. Two di�erentreasons can result in such approximate integrability. Inthe �rst case, just a few (2-3) collective degrees of free-dom are e�ectively involved into the evolution due toa small system size and low level of nonlinearity, andthat restricted dynamics is integrable (for example, suchvariant of FPU recurrence takes place for 3D deep-waterwaves [7, 11]). In the second possible case, the evolu-tion is governed by equations of motion which are closeto some completely integrable system [3]. The �rst casedoes not require any additional symmetry and thereforeis more common, while the second case is more inter-esting, since it allows for a large number of degrees offreedom to be involved into the process.As the theory of water waves is concerned, thereare three the most popular integrable models for threeessentially di�erent dynamic regimes: (i) the nonlin-ear Schroedinger equation (NLSE) approximates anenvelope of deep-water waves, (ii) the Korteweg-de-Vries (KdV) equation describes weakly nonlinear dis-1)e-mail: ruban@itp.ac.ru

persive unidirectional shallow-water waves, and (iii) theBoussinesq equations approximately describe bidirec-tional shallow-water waves (concerning integrability ofthe Boussinesq equations, see [14 { 18]). While the FPUrecurrence was investigated in detail for the regimes (i)[4 { 8, 11] and (ii) [9], it was not studied for the regime(iii), which case includes water waves propagating in aclosed ume. The present work is intended to �ll thisgap by means of direct numerical simulations.It is important that nonlinear dynamics of free watersurface is not exactly integrable (see, e.g., [9, 19], andreferences therein), and therefore it was not obvious apriori in what parameter region the FPU recurrence canbe observed. To clarify this question, here the highlyaccurate numerical method based on exact equationsof motion for two-dimensional (2D) free-surface poten-tial ows of an ideal incompressible uid was employed[20, 21], in the most simple variant when the bottomis horizontal at a constant depth h. In each numericalexperiment, at t = 0 the free surface pro�le was takenin the form y = A0 cos(2�x=L) (the gravity accelerationg is directed against y axis), and the velocity �eld waszero everywhere. Thus, this con�guration correspondsto waves in a basin with vertical walls at x = 0 andx = L=2.Since the exact equations of motion are written interms of so called conformal variables, and the sur-face shape is given in a parametric form X + iY == �ih + (1 + iR̂)�(#; t), with R̂ being a linear inte-gral operator [20, 21], it was a nontrivial task how todetermine the real function �(#; 0) corresponding to agiven initial surface pro�le y = �0(x). This technicalproblem was solved by an auxiliary numerical proce-dure, when in one of the two evolutionary equations(namely, in the Bernoulli equation) the combinationf t + gY g was temporarily replaced with the combina-�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 3 { 4 2011 213



214 V.P. Rubantion f t + g[Y � �0(x)] + � g, where  (#; t) is the sur-face value of the velocity potential, and � = const > 0is some arti�cial damping. With this modi�cation, thefree surface quickly evolved from Y = 0 to the requiredinitial pro�le, and after that we turned to the originalequations [20, 21].The parameters A0 and L were taken inside the re-gion 0:04 � A0=h � 0:24 and 20 � L=h � 120. Thecomputations have demonstrated that the phenomenonof FPU recurrence indeed takes place for moderate ini-tial wave amplitudes A0 . 0:12h. After a few oscil-lations in a standing-wave regime, the system enters aregime with soliton-like coherent structures moving be-tween the \vertical walls". The shapes of the \solitons"evolve with time, and after a period TFPU, which de-pends on h, L, and A0, the system again enters thestanding-wave regime and approximately repeats the ini-tial state, as it is shown in Fig.1. With a realistic valueh � 1 m, the period of recurrence is several minutes.
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Fig.1. Three examples of FPU recurrence in water wavesystems: the free surface pro�les at t = 0 and at t =TFPU(h = 1m;L;A0 = 0:12h) are very close for L=h = 40and for L=h = 60; for L=h = 80 the recurrence is notso perfect but still apparent. The curves with the high-est elevation correspond to the moments when a \soliton"collides with the wall

In Fig.2 and Fig.3, the maximum and minimum el-evations of the free boundary versus time are shown
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Fig.2. The maximum and minimum elevations of the freeboundary versus time for L=h = 40 and di�erent initialamplitudes. The peaks of the dependences at approxi-mately regular time intervals correspond to collisions of\solitons" with the \walls"for di�erent A0 and L. These dependences clearly indi-cate the presence of the FPU phenomenon. However, a\quality" of the recurrence is not uniform in the para-metric region: it is better for smaller initial amplitudesand shorter spatial periods L. For large amplitudesA0=h & 0:20, one can hardly recognize more than one�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 3 { 4 2011
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1/2Fig.3. FPU recurrence for A0=h = 0:12 and di�erent L.With increasing L, the dynamics between the recurrencecases becomes more and more complicated: additionalminima in the envelope of Ymax appear, which correspondto signi�cant excitation of the second, or the third, or ahigher Fourier mode in nearly standing-wave regimerecurrence case. In that strongly nonlinear regime, veryhigh waves grow in the system, which can eventuallyproduce sharp crests and break (not shown).The time of recurrence rapidly increases with thespatial period L, and behavior of the system between therecurrences becomes more complicated, since a largernumber of solitons participates in the dynamics, Ns �� (L=h)(A0=h)1=2. In the course of evolution, there aresome time intervals when a signi�cant part of the en-ergy is concentrated in the second, or in the third, or ina higher Fourier mode.The numerical results for TFPU for di�erent L andA0 are summarized in Fig.4, which shows that, excludingthe cases when (L=h)(A0=h)1=2 . 1 (under this condi-tion, the length L becomes too small to contain a solitonwith an amplitude about A0), the time of recurrence iswell �tted by a formulaTFPU �gh�1=2 � �0:148 + 0:096A0h ��Lh�2� hA0�1=2 :(1)
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Fig.4. The time of recurrence, excluding the cases when(A0=h)1=2(L=h) . 1, is well �tted by the formulaTFPU(g=h)1=2 � C(L=h)2(h=A0)1=2, with C = 0:148 ++ 0:096(A0=h). Roughly, C = 0:16 � 0:01It should be noted here that in each case the quantityTFPU was determined rather roughly, just by looking atgraphs like those shown in Fig.2 and Fig.3. Thereforethe corresponding accuracy is rather low, despite the factthat the accuracy of the simulations is very high (so, theenergy conservation was at least 7{8 decimal digits fromthe beginning of each computation to its end).In order to observe the FPU recurrence in a real-world ume �lled with water, the viscous friction nearthe bottom and near the side walls should be taken intoaccount. Thus an additional condition arises,  �TFPU �� 1, where the damping coe�cient  can be estimatedas  . 1hs�r gh � h�5=4; (2)where � is the kinematic viscosity. Since with �xed ratiosA0=h and L=h the time of recurrence behaves as h1=2,the product  � TFPU behaves as h�3=4, and therefore itcan be indeed small with su�ciently large h.To conclude, in the present work the phenomenon ofFermi-Pasta-Ulam recurrence was observed in the nu-merical experiments modeling potential one-dimensionalwater waves in a closed basin. Based on the numericalresults, a simple �tting formula for the period of recur-rence is suggested.These investigations were supported by RFBR grant#09-01-00631, by the \Leading Scienti�c Schools ofRussia" grant #6885.2010.2, and by the Program \Fun-damental Problems of Nonlinear Dynamics" from theRAS Presidium.1. E. Fermi, J. Pasta, and S. Ulam, Studies of Nonlin-ear Problems, Los Alamos Scienti�c Laboratory ReportNo. LA-1940, Los Alamos, New Mexico, 1955.2. N. J. Zabusky and M.D. Kruskal, Phys. Rev. Lett 15,240 (1965).�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 3 { 4 2011
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