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Influence of disorder on electron-hole pairing in graphene bilayer
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We consider disorder effect on electron-hole pairing in the system of two graphene monolayers separated

by dielectric barrier.

The influence of charged impurities on temperature of phase transition is studied. In

spite of large values of mobility of charge carriers in graphene disorder can considerably reduce temperature of
electron-hole condensation in weak-coupling regime. The quantum hydrodynamics of the system is considered
and phase stiffness of electron-hole condensate and temperature of Berezinskii-Kosterlitz-Thouless transition

to the superfluid state are calculated.

The possibility of superfluidity of spatially separated
electrons (e) and holes (h) was predicted [1] rather long
ago. A set of unusual effects were suggested to occur
in this system: persistent currents flowing in opposite
direction in different layers [1, 2], Josephson effect [3],
increased drag effect [4]. Interesting coherent effects can
also exist in the corresponding quasi-equilibrium system
of excitons with spatially separated e and h (see [5] and
references therein) and there is great progress in the ob-
servation of coherent effects in the system now [6—8].
There is also direct experimental evidence of dipole
exciton superfluidity and Josephson effect in electron-
electron bilayer in quantum Hall regime (see [9] and ref-
erences therein).

Recently new two-dimensional, one atom thick, ma-
terial — graphene was fabricated [10]. Mobility of charge
carriers in graphene achieves values yu ~ 10°sm?/Vs
so graphene has good perspectives in nanoelectronics.
Graphene has unusual electronic structure — its quasi-
particles are chiral fermions with linear dispersion law
[11]. Many interesting phenomena were discovered ex-
perimentally in it: universal minimum of conductivity,
positive magnetoresistance, anomalous quantum Hall ef-
fect, etc.

We consider the system consisting of two separated
by dielectric medium and independently gated graphene
layers with equal density of electrons and holes in 1st
and 2nd layer accordingly [12-14]. Fermi circles of e
and h coincide due to perfect symmetry between charge
carriers in graphene and e-h pairing can occur due to
Coulomb interaction. Screening of electron-hole interac-
tion and influence of graphene peculiarities on e-h pair-
ing were investigated theoretically in [12]. In the present
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work we consider influence of disorder on e-h pairing
and analyze the effect of graphene features on macro-
scopic quantum hydrodynamics of the system. There
are two kind of disorder in graphene: 1) defects of lattice
that have short-range potential of interaction; 2) charged
impurities from substrate that have long-range poten-
tial. From analysis [15] of dependence of conductivity
on concentration of charge carriers in graphene in single
graphene layer it was obtained that main contribution
to damping of carriers results from charged impurities.
So we consider here the second type of disorder.
Hamiltonian of ideal system in weak coupling regime

is:
H = Z{kazak + kabzbk—
k
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where ar and by are annihilation operators of elec-
tron and hole in e-layer and h-layer, correspondingly;
&, = vpk — EF is dispersion law of quasiparticles; ¢1 =
= Pr1q—Pr and ¢o = ¢p'_y— Py are scattering angles of
electron and hole; additional factors cos(¢1/2) cos(¢=2/2)
originate from spinor form of envelope wave function
of quasiparticles in graphene; U,us(g) is potential of
screened electron-hole interaction. Here we suppose that
electrons and holes from different valleys and with dif-
ferent projection of spin are pairing independently.

The interaction of charge carriers with Coulomb im-
purities corresponds to additional terms in Hamiltonian
of the system:
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Fig.1. (a) Feynman diagrams for the self-energy of elec-
trons and holes. (b) Feynman diagram for effective e-h
interaction. (c) Diagrammatic representation of Bethe-
Salpeter equation

where Z,r; are charge and position of i-th impurity
atom. U, and Uy, are interaction potential between
two probe charges in the same layer and in opposite
layers, correspondingly. Additional factors cos(¢g i /2)
are also graphene feature. Screened interaction potential
Uin, Uout has the form:

V4 xVE(1— e D)
1+ 2xV +x2V2(1 — e24D)’

Uin(q) (3)

Ve—tP
1+ 2xV +x2V2(1 — e2eD)’

Uout (9) (4)
where V(q) = 2m/eq is the bare Coulomb interaction
in the plane; ¥ = 4e?vp is the static limit of density re-
sponse function; vg is the density of states on Fermi sur-
face. € is dielectric constant of medium that surrounds
graphene.

Temperature of the phase transition to coherent state
corresponds to appearance of Cooper instability of ver-
tex function. Vertex function satisfy Bethe-Salpeter
equation. For determination of critical temperature we
use following approximations:

1) BCS-approximation or weak coupling approxima-
tion kD > 1.

2) kr < g, < a; !, thus interaction potential effec-
tively scatter electrons (or holes) to all states on Fermi
surface in the same valley but hopping processes between
different valleys can be neglected. Here a, is distance
between carbon atoms in graphene lattice.

3) Impurities have the same charge (Z = 1) and their
concentrations n in both layers coincide.

4) v < Ep, thus calculating self-energy and ver-
tex function we can neglect diagrams with cross-section
of impurity lines [16]. Here v = 41 + 72 is damping
of electron (or hole) on Fermi surface due to scattering
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on impurities, where 7; corresponds to the probability
of scattering of charge carrier on impurity of the same
layer and 7, corresponds to the probability of scattering
on impurity of the other layer:

_ 2,4 Z . n2 o2 Prk ,
Y1(2) = mZ°e ~ |U1n(out) (kak )| cos 2 (sEkk
(5)

Feynman diagrams for effective e-h interaction and
for Bethe-Salpeter equation under described above ap-
proximations represented on Fig.1b,c. Self-energy for
electrons and holes in first Born approximation is de-
picted on Fig.2.
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Fig.2. Dependence of values of damping 1 (line 2), v» (line
4), 4 (line 3 ) and 4* (lines I) on dimensionless distance
kr D between graphene layers. Concentration of Coulomb
impurities is n = 10'° cm ™2

The temperature of phase transition to coherent state
is defined by the equation:

T 1 1

In—=¥(- -0 |-

", (2 * 27rT> (2) ’ (©)
where ¥ is logarithmic derivative of I'amma-function,
T, is critical temperature in the system without disor-
der. Damping v* = <1 + 72 + 2% can be interpreted

as the probability of decay of Cooper pairs. Value of
damping 7 is:

5 =nnZ’%e* Z Uous (K, k') Uin (K', k) cos? %5]_:;%,,

= 2
(7)

and it can be interpreted as the probability of scattering
of electron and hole on impurities situated in one of the
layers. It corresponds to impurity interaction lines that
connect electron and hole propagator lines as depicted
on Fig.1b. Values of all damping are proportional to the
concentration of impurities so it is convenient to fix con-
centration and consider the dependence of values 72, y1 ¥
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only on distance between graphene layers D. These de-
pendencies are presented in Fig.2. Despite of the strong
dependence of all damping on distance their combination
~v* smoothly decrease with increasing distance D. This
compensation is caused by two competition processes.
If distance D decrease: 1) interaction U,y of electrons
(holes) with impurities of h(e)-layer increases; 2) charge
carriers from both layers play more significant role in
screening of interactions Uyyy, Uin decrease.

Numerical solution of eq.(6) is presented in Fig.3. In
first order of parameter v*/T, the equation has simple
analytic solution:

™

T=Th— 37" (8)

So e-h pairing would be destroyed at v* = 0.887,,
and minimal value of critical temperature T/Min =
Minimal value of

= 1.14~*. the disorder concen-
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Fig.3. Dependence of dimensionless temperature of phase
transition to coherent state on dimensionless value of
damping v*. Solid line: analytic solution T' = T, — §v*;
dotted line: numerical solution of Eq. (5)

tration in relatively clean samples of graphene now is
n ~ 10 sm=2 [15], which corresponds to minimal value
of critical temperature equals 7™ = 19.8 K.

Disorder can destroy coherent state because impu-
rity potential acts differently on components of Cooper
pair. There are two causes: 1) e and h have different
charge 2) e and h are situated in different layers. It is
analogous to the influence of paramagnetic impurities on
superconductivity [17].

Let us consider now peculiarities of quantum hydro-
dynamics of the system. Behavior of the system on spa-
tial scales larger than coherence length ¢, = hvp/A can
be described by order parameter Ae®?. Gauge invari-
ant expression for free energy (at negligible interlayer
tunneling) has the form:

F= %S (V(p(r) - % (A%(r) — Ah(r)))2 dr. (9)

Here coefficient pg is phase stiffness, that describe sys-
tem on large scales; A¢(")(r) is value of vector potential
in e(h)-layer. The last term in brackets dramatically
changes hydrodynamics of the system. It permits paral-
lel magnetic field between the layers to excite persistent
currents flowing through layers in opposite directions:

oF e e
se(h) — _ — 4 Vo — —
J 65 o(h) + pPs ( "2 c&A) . (10)

For microscopic calculation of phase stiffness it is
convenient to redefine reaction functions in the fol-
lowing way: 1) Response function of electric current:
je = :FFfTinéAe(h); 2) Response function of momen-
tum: Pe(®) = < ypsAe(). In this case values of x;
and p, coincide by the definition.

According to Kubo linear response theory we calcu-
late reaction functions x; and x,. In the system without
disorder at T' = 0K we obtain:

Er _vr n
= = — =—. 11

Xi= g =g Vn  XP=5 (11)
Here n is the concentration of electrons (holes) in a sin-
gle valley and with fixed projection of spin. The same
reaction functions for the system of nonchiral fermions
with quadratic dispersion law £ = p?/2m— EF in bilayer
formed by two quantum wells or semimetallic layers have
the form:
o EF n

Xi= 4= =5 XP:g- (12)

Unusual electronic properties of graphene results in
the following: 1) Contrary to the case of massive fermi-
ons response functions x; and x, in graphene bilayer
don’t not proportional to each other. This unusual result
is the consequence of independence of velocity of chiral
fermions on momentum of the quasiparticle. 2) Value
X; (current is observable physical quantity) does not
proportional to the concentration of charge carriers in
graphene; 3) Value xp for massive fermions and for chi-
ral massless fermions coincide.

Full values of reaction functions are four time greater
because of independent contribution of electrons and
holes from different valleys and different projection of
spin.

Two-dimensional system under consideration be-
came superfluid bellow the critical temperature of Bere-
zinski—Kosterlitz—Thouless (BKT) transition. Texr is
always less than temperature obtained from mean field
theory T, and satisfies the equation [18]:

™
TerrT = 5Ps (TskT). (13)
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Temperature of BKT transition depends on phase stiff-
ness of one of four decoupled condensates since each
condensate undergoes its own phase transition. In first
order on value T,/ EF solution of the equation takes the
form

Tkt = To(1 — 4T,/ EF). (14)
In weak coupling regime T, /ps ~ T,/Er < 1, and dif-
ference between temperatures T, and Tpgr is insignif-
icant. Weak disorder v*~T, cannot change the ratio
between them because it reduces phase stiffness only on
value Apg ~ 4*. So relative difference between TpkT
and T, in system with disorder can be estimated as
(Text — T,)/T, ~ T,/ EFr and can be neglected.

Conclusion. In this work we calculate temperature
of phase transition to coherent state and temperature of
Berezinski-Kosterlitz-Thouless transition to superfluid
state taking into account Coulomb impurities. The min-
imal value of temperature of “clean” system in which
pairing won’t be destroyed by disorder was obtain. Also
the peculiarities of quantum hydrodynamics of the sys-
tem were considered and the exotic dependance of phase
stiffness on density of charge carriers was obtained.

The authors thank A.A.Sokolik for fruitful discus-
sions. The work was supported by RFBR and RAS pro-
grams.
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