
Pis'ma v ZhETF, vol. 93, iss. 4, pp. 252 { 255 c 2011 February 25Generation of continuous-variable entanglement in a three-level systemY.H.Ma, E.Wu1)School of mathematics, physics and biological engineering,Inner Mongolia University of Science and Technology, Baotou, 014010 P. R. ChinaSubmitted 7 December 2010A single three-level atom interacting with a two-mode cavity is studied. The generation of output entan-glement and output squeezing is investigated. It shows that this system can serve as an output-entanglementsource. By tuning the pump �eld or the detuning, strong entanglement can be generated.1. Introduction. Continuous-variable (C-V) entan-glement is known to be a very important resource inquantum computation and quantum communication [1].The main motivation of introduction continuous vari-ables theory in quantum information originates from amore practical observation: with continuous quadratureamplitudes of the quantized electromagnetic �eld, thequantum communication protocols is e�ciently achievedin quantum optics. The generation of C-V entanglementhas attracted much interest after the �rst realization ofunconditional quantum teleportation [2]. Therefore, howto generate high-intensity entangled light has become anenergetic research �eld in quantum optics.The classical scheme of producing C-V entanglementis Nondegenerate parametric down conversion (NPDC)in a crystal [3, 4] and injecting single-mode-squeezedlight to a beam splitter [5 { 7]. Besides, the preparationof the high-intensity entanglement based on atomic co-herence has been investigated extensively [8 { 17]. Forexample, Xiong et al. [8] propose a class of generatingentanglement ampli�ers based on two-mode correlatedspontaneous emission lasers (CEL) involving a three-level atom interacting with two modes of the cavity isinduced by pumping atom from the lower level. Then,Tan et al. [9] extend the work of Ref. [8] and investi-gate the generation and evolution of entangled light inthe Wigner representation. In order to enhance the in-tensity of C-V entanglement, Zhou et al. [10] study thegeneration of a macroscopic entangled state in a singlethree-level atom in cavity-QED system even under thepresence of cavity losses. Recently, Ki�ner et al. [11]consider a scheme of generating two-mode entanglementin macroscopic light just using a single four-level atom.Very Recently, in order to estimate the entanglementin a quantum beat laser, Qamar et al. [12] consider aquantum beat laser as a source of entangled radiation.All above researches are centred on generating C-Ventanglement in the cavity. In this letter, output entan-1)Tel: +86 04725954358; e-mail: towue@163.com

glement and output squeezing are investigated in a singlethree-level atom interacting with a two-mode cavity. Itshows that this single atom cavity-QED system can gen-erate output entanglement. By tuning the intensity ofpump �eld with Rabi frequency 
 and the detuning �,strong output squeezing and output entanglement canbe produced.2. The model and calculation. Here, we con-sider a single three-level atom in a cascade con�gurationtrapped in a two-mode �eld cavity. The con�guration ofthis system is depicted in Fig.1. The two atomic transi-
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g2Fig.1. An outline of a single three-level atom and excitonmode in a microcavity driven by an external classical �eldtions jai $ jbi and jbi $ jci interact with the two-modecavity with detunings ��. The dipole forbidden atomictransition between jai and jci are resonantly driven bya classical �eld with Rabi frequency 
. The two-modecavity interacts with atomic transitions jai $ jbi andjbi $ jci with the detunings ��, and the classical �eldwith the Rabi frequency 
 drives the dipole forbiddenatomic transition between jai and jci resonantly. In ro-tating wave approximation and in the interaction picture,the Hamiltonian of this system is given byĤI = g1(â�̂bc + ây�̂cb) + g2(b̂�̂ab + b̂y�̂ba) ++ 
(�̂ac + �̂ca)� �(�̂aa + �̂cc); (1)252 �¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 3 { 4 2011



Generation of continuous-variable entanglement in a three-level system 253where g1 and g2 are the atom-�eld coupling constants.â(ây) and b̂(b̂y) are the creation (annihilation) operatorsof the two cavity modes, and �̂ij = jiihjj (i; j = a; b; c)are the atomic transition operators.The time evolution of the Heisenberg equations forthe atomic operators �̂bc and �̂ba are written asid�̂badt = �g1ây�̂ca + g2b̂(�̂bb � �̂aa) + 
�̂bc � ��̂ba;id�̂bcdt = �g1ây(�̂cc � �̂bb)� g2b̂�ac +
�̂ba � ��̂bc;(2)under the large detuning condition, Eq. (2) can be solvedadiabatically by taking d�̂ba=dt = d�̂bc=dt = 0. The adi-abatic solutions for �̂ba and �̂bc can then be substitutedinto the Hamiltonian Eq. (1), and can be obtainedĤ1 = 
(�̂ac + �̂ca)� �(�̂aa + �̂cc) ++ 1
2 � �2 f�g21(2aya+ 1)(�̂cc � �̂bb) ++�g22(2~by~b+ 1)(�̂aa � �̂bb) + 
[(g21aya+ g22byb)�̂ac++ (g21aay + g22bby)�̂ca] + 2g1g2�(ab�̂ac + ayby�̂ca) ++ g1g2
(ab+ ayby)(�̂aa + �̂cc � 2�̂bb)g: (3)If the atom is initially prepared in the level jbi, it willremain con�ned to this level due to the large detuningapproximation. The approximate e�ective Hamiltonianfor this case reduces toĤe� = �1aya+ �2byb+ 12(�1 + �2) + �(ab+ ayby); (4)where� = 2g1g2
�2 � 
2 ; �1 = 2g21��2 � 
2 ; �2 = 2g22��2 � 
2 :In Eq. (4) the constant term 12 (�1 + �2) does not a�ectthe dynamics of this system. This Hamiltonian can berewritten asĤe� = (�1 + �2)K̂0 + �(K̂� + K̂+) + 12(�1 � �2)N̂0;(5)where K̂0 = 12(aya+ byb+ 1); K̂� = ab;K̂+ = ayby; N̂0 = aya� byb:These operators obey the SU(1; 1) commutation re-lations [K̂�; K̂+] = 2K̂0, [K̂0; K̂�] = �K̂�, and[N̂0; K̂0] = [N̂0;K̂�] = 0. Thus, we can use the SU(1; 1)

Lie-algebra to expand the unitary evolution operatorÛ = e�iĤeff t asÛ = e(A+K̂+)e(lnA0K̂0)e� it2 (�1��2)N̂0e(A�K̂�) (6)where A0 = a20, A+ = A� = (�i�t=�)a0 sinh�, witha0 = 1cosh�+ it (�1 + �2)2� sinh� ;�2 = [�(�1 + �22 )2 + �2]t2: (7)When the two-mode �eld is initially prepared in a co-herent state j�; �i. The time evolution of the �eld statecan be obtainedj	f (t)i ) exp(A+âyb̂y)j�; �i: (8)The SU(1; 1) Lie-algebra yieldseA+âyb̂y = e(#�âb̂�#âyb̂y)eA�+âb̂eg(âyâ+b̂yb̂+1): (9)Let # = rei", g = ln cosh r, where r and " are deter-mined by the relationA+ = �ei" tanh r: (10)The squeezed parameters r and " arer=tanh�1 jA+j; cos " = �ReA+)jA+j ; sin " = � Im(A+)jA+j :The state of the system can then be written asj	f (t)i=e(#�âb̂�#âyb̂y)j�; �i=S(#)D(�)D(�)j0; 0i; (11)it is obviously a two-mode coherent-squeezed state[18, 19].3. Output Entanglement. In this section, it showsthat this system can serve as an entangled source of theoutput cavity �elds. The numerical results of the C-Ventanglement is presented. Employed the methods ofinput-output theory [20, 21], the entanglement betweenthe two modes outside the cavity can be evaluated. As-sume that the two-mode cavity is driven by two exter-nal laser �elds with strengths �1 and �2, the Langevinequations of motion for the two-mode cavity �elds canbe expressed as_a = �i(�1a+ "by + ��1)� �12 a�p�1ain;_b = �i(�2b+ "ay + ��2)� �22 b�p�2bin; (12)where, ain and bin are the annihilation operators of in-put �elds. �1(2) is the cavity decay rate of mode a(b).�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 3 { 4 2011
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0.70Fig.2. The output squeezing spectrum S+(!) as a function of parameters !, � and 
. The parameters are g2 = 2g1,�1 = �2=0.2g1, (a) 
 = 5g1; (b) � = �50g1With the transformations a = a0 + �0 and b = b0 + �0,Eq. (12) can be rewritten as_a0 = �i(�1a0 + "b0y)� �12 a0 �p�1ain;_b0 = �i(�2b0 + "a0y)� �22 b0 �p�2bin; (13)where �0 = �2i��1(�2 + 2i�2)� 4��2"(�1 + 2i�1)(�2 + 2i�2) + 4"2 ;�0 = �2i��2(�1 + 2i�1)� 4��1"(�1 + 2i�1)(�2 + 2i�2) + 4"2 : (14)Using the input-output relationship ajout = ajin ++ p�jaj , one can perform fourier transformation toEq. (13) aout(!) = p�1�0�(!)�� (��1�2 + "2)ain(!)� i"p�1�2byin(�!)�1�2 � "2 ; (15)bout(!) = p�2�0�(!)�� (��1�2 + "2)bin(!)� i"p�1�2ayin(�!)�1�2 � "2 ;where �1 = �1=2 + i(�1 � !), �2 = �2=2 � i(�2 + !),�1 = �2=2 + i(�2 � !), and �2 = �12 � i(�1 + !).The squeezing spectrum can be de�ned as [22]hI�(!)ihI�(!0)i+ hI�(!0)ihI�(!)i == 2S�(!)�(! + !0); (16)where I�(!) can be de�ned asI+(!) = 1p2 [a(!) + ay(!)� b(!)� by(!)];I�(!) = 1p2i [a(!)� ay(!) + b(!)� by(!)]:

According to this de�ne, one �nd that S+(!) is equal toS�(!) for uncorrelated vacuum input noise.To evaluate entanglement of the output �elds, theuctuated criterion proposed by Duan et al. [23] is em-ployed S+(!) + S�(!) < 2: (17)If above condition is satis�ed, the spectrum S�(!) is notonly squeezing but also entangled. Assumed that the in-put �eld is in the vacuum, from Eq. (15) one can givethe expression of S+(!) asS+(!) == j"2+��1�2j2�ip�1�2"(�1��2��2��1)+�1�2"22j�1�2�"2j2 ++ (�j ! �j): (18)From Eq. (15) and Eq. (18), it can be clearly seen thatthe squeezing spectrum is independent of the parameters�0 and �0.In Fig.2, output squeezing spectrum S+(!) for thetwo-mode light as a function of parameters !, � and 
is plotted. It shows that it is possible to obtain thesqueezing and C-V entanglement for output photons.The maximum squeezing and maximum entanglementcan be observed for the parameter ! = 0, while withthe absolute value j!j increasing, squeezing spectrumreduces to zero corresponding to S+(!) = 1. Moreover,the output squeezing is decreasing with the detuning �enhancing (Fig.2a). The degree of squeezing increaseswith the parameter 
 which represents the pump �elds(Fig.2b). Thus, by increasing the pump �eld or reduc-ing the detuning, strong output squeezing and outputentanglement can be generated.In order to investigate the inuence of the decay rate on the output squeezing and output entanglement. In�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 3 { 4 2011
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 = 5g1, � = �40g1 and (1)�1 = �2=0.05g1; (solid line); (2) �1 = �2=0.2g1 (dashedline); (3) �1 = �2=g1 (dotted line)Fig.3 we show that the squeezing spectrum changes withdi�erent decay rates of the cavity. For �1 = �2 = 0:2g1or �1 = �2 = g1, the splits from one valley into four min-ima are seen from the �gure, that is, a minimum valuescorresponding to maximum squeezing and entanglementcan be obtained. Generally only one valley can be seenfor �1 = �2 [24], however for �1 = �2 = 0:05g1, foursymmetrical minimum values corresponding to the max-imum squeezing are observed. This abnormal behaviororiginates the nonzero and asymmetric parameters �1and �2 (�1 6= �2 it can be seen from Eq. (5)). With theincreasing of the decay rate �, this abnormal splits disap-pear. Moreover, one can �nd that an appropriate value� can ensure the successful squeezing and entanglement.For example, in this system choosing �1 = �2 = 0:2g1is better than �1 = �2 = 0:05g1, g1. From the �gureone can also see that the bandwidth of the squeezingbecomes wide with the increasing of the decay rates.4. Conclusion. In summary, using a single three-level atom driven by a pump �eld, a scheme for thegeneration of output entanglement and squeezing is pro-posed. According to the numerical results, the inuenceof the Rabi frequency 
, the detuning � and the decayrate  on the output squeezing and entanglement is in-vestigated. It shows that, by increasing the strengthof pump �eld or reducing the detuning, strong outputsqueezing and C-V entanglement can be generated. Inaddition, one �nd that choosing an appropriate value �can ensure the successful squeezing and entanglement.The project is supported by NSFC under Grant#11074028.
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