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 2011 March 25Soft topological objects in topological mediaJ. I. V�ayrynen�1), G. E.Volovik�+2)�Low Temperature Laboratory, Aalto University School of Science, FI-00076 AALTO, Finland+Landau Institute for Theoretical Physics RAS, 119334 Moscow, RussiaSubmitted 15 February 2011Topological invariants in terms of the Green's function in momentum and real space determine propertiesof smooth textures within topological media. In space dimension d = 1 the topological invariant N3 in termsof the Green's function G(!; kx; x) determines the fermion number of the kink, while in space dimension d = 3the topological invariant N5 in terms of the Green's function G(!; kx; ky; kz; z) determines quantization of Hallconductivity in the soliton plane within the topological insulators.1. Introduction. In the fully gapped topologi-cal systems in even space dimension, the Chern-Simonsterms are well de�ned. The prefactors of these termsare represented by topological invariants in momentum-frequency space, which are expressed in terms of theGreen's function and are robust to interactions (see, e.g.,Refs. [1 { 6] for 2+1 systems; Refs. [6, 7] for 4+1 sys-tems; and Refs. [8, 9] for systems in general 2n + 1spacetime). These invariants determine quantization ofthe parameters of the system, such as intrinsic Hall andspin-Hall conductivity in 2+1 and 4+1 systems. For oddspace dimension the situation is more complicated, espe-cially for time reversal invariant (TRI) systems, wherethe suggested Chern-Simons term formally violates thetime reversal symmetry, see, e.g., discussion in Ref. [10].Here we show that though these terms are not well-de�ned for bulk topological matter, they well describethe properties of smooth textures within the topologi-cal matter. The well-de�ned topological invariants inmomentum-frequency space are expressed in terms ofthe Green's function are robust to interactions. Theyalso determine the quantization of the parameters of thesystem, in a given case these are the quantum numbersof the texture, such as the fermion number in 1+1 sys-tem and quantized Hall or spin-Hall conductivity withinthe smooth interface in the 3+1 systems.The smooth textures are analogues of the topolog-ical solitons in condensed matter systems with sponta-neously broken symmetry. There are two types of topo-logical objects in these condensed matter systems: sin-gular topological defects (such as domain walls, quan-tized vortices, hedgehogs and dislocations) and contin-uous structures called topological solitons, skyrmionsand textures. As distinct from the singular topological1)e-mail:jukka.vayrynen@helsinki.�2)e-mail: volovik@boojum.hut.�

defects, which are described by conventional homotopygroups, textures do not have singularities in the orderparameter �elds determined on the vacuummanifold andare described by relative homotopy groups (RHG), see[11]. These homotopy groups �n(R; ~R) deal with twodi�erent manifolds of the order parameter: the pointswithin the soliton are mapped to the vacuum manifold(moduli space) R = G=H , while the points outside thesoliton are mapped to the subspace ~R = ~G= ~H. The lat-ter is restricted due to additional interaction which be-comes important at large distances and which reducesthe symmetryG of the physical laws to its subgoup ~G. Inthe class of planar topological objects, domain walls aresingular objects described by the group �0(R), while thesmooth textures, such as planar solitons and Bloch walls,are described by the relative homotopy group �1(R; ~R).Analogues of such objects exist in topologicalmatter.The role of singularities in the order parameter �eldson the vacuum manifold is played by the Green func-tion's singularity in momentum space, such as nodes inthe energy spectrum. For example, the analogue of asingular wall is an interface between the gapped bulkstates, which contains gapless fermions, while the ana-log of a smooth wall is an interface, in which the Green'sfunction has no singularity, i.e., within the nonsingularobject the system remains fully gapped. The electronicstructure of smooth textures is described by the relativehomotopy groups �n(R; ~R) which deal with two man-ifolds: the space R of the Green's function within thetexture and its subspace ~R outside the texture. Outsidethe texture the space of the Green's function is restricteddue to some symmetry in bulk, while within the texturethis symmetry is violated or is spontaneously broken.Examples of the bulk symmetry are time reversal sym-metry, spin rotation symmetry, crystal symmetry etc.Application of the RHG to classi�cation of topologicalmedia has been also discussed in [12].378 �¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 5 { 6 2011



Soft topological objects in topological media 379In this paper we consider smooth interfaces whichseparate the bulk states of time reversal invariantinsulators and fully gapped superfuid systems, theirmomentum-space topological invariants and the relatedquantum numbers. The relative homotopy group de-scribing the fully gapped interfaces in the d-dimensionaltopological media is �d+2(R; ~R).2. Domain walls and solitons in 3D topolog-ical media. Let us consider examples of the singularand continuous interfaces in the vacuum described byHamiltonian used in relativistic QFT:Ĥ = �3� � p+ �1m1 + �2m2: (1)It represents a particle with a complex mass m == m1 + im2. For real mass, m2 = 0, the Hamiltonianobeys time reversal symmetry and anticommutes withthe matrix �2. The vacuum of this fermionic �eld isdescribed by the 3D topological charge [13]NK= 14�2 tr �KZBZd3kH�1@[kxHH�1@kyHH�1@kz]H� :(2)Here the momentum space integral is over R3 in transla-tional invariant systems, and over the Brillouin zone incrystals; K is the matrix anticommuting with H, whichin a given case is K = �2; we use antisymmetrizationf[ij::: ] = 1n!XSn (�1)P fPiPj:::over n indices. The invariant (2) is valid also for timereversal invariant super
uids/superconductors, such as3He-B. For the Hamiltonian (1) with m2 = 0 one hasNK = m1=jm1j. The interfaces { domain walls and soli-tons { are described by the coordinate dependent massĤ = �3� � p+ �1m1(z) + �2m2(z); (3)where z is the coordinate normal to the plane of the in-terface.Singular walls: The singular interface is the domainwall separating the bulk states with di�erent values ofNK , within which the symmetry K is obeyed. For theHamiltonian (1) this means that the mass remains realthroughout the interface, m2(z) � 0, i.e., the time re-versal symmetry is obeyed for the whole interface, whilethe mass m1 crosses zero and changes sign within theinterface, m1(�1) = �m1(1). Since the bulk stateshave di�erent topological charges, they cannot be con-nected adiabatically, and thus the domain wall necessar-ily contains gapless fermion zero modes. That is whysuch interface is considered as singular. It is the analog

of the domain wall in ferromagnets in which magnetiza-tion crosses zero value. The singular interfaces and thegapless fermion modes inside them have been discussedfor super
uid 3He-B in [14, 15]. On the topological andnon-topological kinks and domain walls in Grand Uni-�ed Theories (GUT), see the book by Vachaspati [16].Solitons and nonsingular walls: The nonsingular in-terface is obtained when the mass becomes complexwithin the interface, m2(z) 6= 0. The time reversal sym-metry is violated within the smooth interface and thespectrum becomes fully gapped everywhere. The inter-face where the phase of m1 + im2 changes by � is theanalog of the Bloch and Neel domain walls in ferromag-nets, where the magnetization is nowhere zero and theorientation of the magnetization continuously changesacross the wall. It is also the analogue of the topologicalsoliton in 3He-A and 3He-B. Contrary to the singularinterfaces where the symmetry is restored in the core, incontinuos interfaces the symmetry is smaller than thatoutside the interface. In relativistic theories, such in-terfaces have been considered by Wilczek [17] and alsodiscussed in the book [16]. Wilczek paid attention to thedi�erence between the singular con�guration which hasgapless modes, and continuous con�guration, which isfully gapped. For the gapless vacua in GUT this meansthat there are more massless particles outside such aninterface than inside it [16].3. 5-form invariant for smooth interface in 3Dtopological media. In odd space dimension the con-tinuous texture can be described by the topological in-variant which characterizes the group �d+2(R; ~R). Forspace dimension d = 3 one has the group �5(R; ~R) withthe invariantN5 = 14�3itr ZBZ d3k Z 1�1 dz Z 1�1 d! �� G@[kxG�1G@kyG�1G@kzG�1G@!G�1G@z]G�1; (4)where z is coordinate across the interface. This invari-ant in terms of the quasiclassicalmatrix Green's functionG(k; z; !) is applicable to di�erent d = 3 systems suchas the 3D topological insulators and super
uid 3He-B.The 5-form integrals for topological media in terms ofGreen's functions have been discussed in Refs. [6, 18, 7].The combined momentum space and real space topol-ogy has been applied for description of the singulartopological defects and interfaces within the topologi-cal media and fermion zero modes in these objects, see[19, 20, 14, 6, 21, 18, 22], and now we discuss this forcontinuous textures. For general continuous textures,N5 may take any value, but it becomes integer or half-integer for appropriate boundary conditions when the�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 5 { 6 2011 7�



380 J. I. V�ayrynen, G. E.Volovikbulk states at z = 1 and z = �1 coincide, or areconnected by symmetry.As an example, consider Hamiltonian (3) withm1(z) = M1 cos�(z) and m2(z) = M2 sin�(z), where�(z) changes from 0 to �n across the interface. The gapis �nite everywhere, and thus the integral (4) is well-de�ned and equals N5 = n=2 sign(M1M2). For n = 2k,the states are the same on two sides of the soliton andN5 is an integer. For n = (2k + 1), the bulk states haveopposite sign of mass m1 and the invariant N5 is a halfinteger. If time reversal symmetry is not obeyed in thebulk, the integral may take arbitrary values.It is important that the invariant N5 is determinedboth by the states of bulk topological matter outside thetexture and by the internal structure of the texture. Thisinvariant is expressed in terms of the Green's function,and thus is robust to perturbations such as interactions.In interacting systems the single- particle Hamiltonian,such as that which enters (2), is a secondary object. Itis the e�ective Hamiltonian which belongs to the sametopological class as the original interacting system, andthus can be adiabatically obtained from the interact-ing system. For example, one can consider the inverseGreen's function at zero frequency as e�ective Hamil-tonian, He�(k) = G�1(! = 0;k).The invariant N5 can be also applied to 3D topolog-ical insulators. Let us consider the model Hamiltonianfor a TRI insulator (see e.g. [23]):H = 
�n�(k); 
0 = �1 ; 
i = �i�3; (5)where n� is a 4-vector and in a relativistic theory thematrices must be multiplied by �1 to get the conven-tional 
-matrices. The particular 4-vector discussed in[23] is:H = ���3(�x sin kx + �y sin ky + �z sinkz) + �1m1(k);(6)where m1(k) = M1 � t(cos kx + cos ky + cos kz). Insidethe texture one hasHtexture = ���3(�x sin kx + �y sin ky + �z sin kz) ++ �1m1(k; z) + �2m2(k; z): (7)One may choose, for example, the following texture:m1(k; z) =M1 cos�(z)� t(cos kx + cos ky + cos kz) andm2(k; z) = M2 sin�(z), with � changing from 0 to �nacross the interface. For 2t < jM1j < 3t and largeenough jM2j, one obtains N5 = n=2 sign(M1M2).4. 5-form invariant, �-term and QHE. For the3D insulators the e�ects similar to those in axion QEDtake place. A �-term in the electromagnetic action has

been proposed for the time reversal invariant (TRI) in-sulators, see, e.g., [24, 25, 23]:S = e232�2 "���� Z d4x �F��F�� = e24�2 Z d4x �E �B:(8)In bulk insulators, � is a space-time constant, and thisterm does not make sense, since the action becomes atotal derivative. Moreover, the �-term violates time re-versal invariance and its application to TRI systems istricky, though in a periodic space-time the situation isclearer [26]. However, all these problems vanish when wediscuss the properties of a smooth texture within whichthe time reversal invariance is violated. While the para-meter � itself is ill-de�ned, the Hall conductivity in theplane of the interface is a well-de�ned quantity, thoughformally according to (8) it can be related to the changeof � across the interface (see [27]) :�xy�H = �(+1)� �(�1)2� ; �H = e2h ; (9)Using the gradient expansion of the action, the Hall con-ductivity in the interface is expressed in terms of theinvariant N5 (see Appendix):�xy�H = N5: (10)Applying this to the Hamiltonian (3), where � is relatedto the complex mass, m2=m1 = tan � [17], for a texturewhere m2 changes from �m0 to m0, one obtains�xy�H = 14�3itr ZBZ d3k Z m0�m0 dm2 Z 1�1 d! �� G@[kxG�1G@kyG�1G@kzG�1G@!G�1G@m2]G�1: (11)This transforms to the integer-valued N5 in the limitof large m0. The same is applied for the more generalHamiltonian H = 
�n�(k) + 
5m2, 
5 = �2.According to (10), the Hall conductivity is deter-mined both by the properties of bulk states outside theinterface and by the internal structure of the interface.For the texture inside a TRI topological insulator, i.e.,in the system which is TRI at z = �1, the Hall conduc-tivity is quantized. Note that in this system the integralN5 is a topological invariant, which belongs to the groupZ, i.e., it can take any integer or half-integer value, asdistinct from the Z2 nature of the bulk insulator, wherethe parameter � is ill de�ned. In other words, the group�5 = Z with its invariant N5 describes the topology ofthe solitons within the topological insulator, rather thanthe insulators themselves.5. 1D skyrmions and their topological andquantum numbers. The relative homotopy group�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 5 { 6 2011



Soft topological objects in topological media 381�3(R; ~R) with the 3-form integral N3 in terms of theGreen's function G(!; kx; x),N3 = 14�2 tr Z 1�1 dx Z 1�1 d! ZBZ dkx �� G@[kxG�1G@!G�1G@x]G�1; (12)describes 1D skyrmions in 1D gapped topological sys-tems. These solitons have quantum numbers such asfermionic charge and quantized electric charge [28 { 30].In general these charges are expressed in terms of thetopological charge N3. Let us now consider the electriccharge. Typically this charge is related to 1D �-term inthe action, S = 12� Z dxdt�"��@�A� : (13)Again, this �-term does not make much sense for con-stant �, but it becomes meaningful for the inhomoge-neous order parameter within the soliton where the timereversal symmetry is violated. Assuming A0 is constantin space, one obtains the solitonic electric charge:S = 12� Z dxdt@x�A0 = 12� Z dt(�(+1)� �(�1))A0;(14)q = �(+1)� �(�1)2� : (15)As distinct from the ill-de�ned �, the fermionic chargeof the smooth structure is well de�ned. It is expressedin terms of the Green's function, and { using the gra-dient expansion { in terms of the quasiclassical Green'sfunction G(!; kx; x):q = 14�2 tr Z dx Z 1�1 d! ZBZ dkxG@[kxG�1G@!G�1G@x]G�1; (16)which is the invariant N3. Thus one obtains the gen-eral relation between the Green's function topologicalinvariant N3 characterizing the smooth structure and itsfermionic charge q: q = N3: (17)Eq. (17) is analogous to equation (10) for quantizationof Hall conductivity in the smooth interface within the3D TRI topological insulators. It is valid for interactingsystems as well.Consider as an example the soliton in the following1D system [24]Ĥ = �3px + �1m1 + �2m2; (18)

which is time reversal invariant for m2 = 0. For thesoliton with m1(x) = M cos'(x), m2(x) = M sin'(x),where ' is going from 0 to �n, one obtains N3 = n=2and thus the charge of this soliton must be q = n=2.The fermion number of the domain wall with m2 = 0,m1(+1) = �m1(�1) has been discussed by Jackiwand Rebbi [28], who got the fermionic number 1=2, i.e.q = �1=2. This agrees with the topological chargeN3 = �1=2 of the soliton obtained by softening of thedomain wall when the imaginary mass is added. Suchsoftening does not change the boundary conditions atin�nity and thus the fermionic charge may change onlyby integer number { the number of fermions.6. Discussion. We found a connection betweentopological invariants describing the smooth textures in-side the topological media and their quantum numbers.We considered only one type of textures in (1+1)D and(3+1)D media. The other types of the continuous topo-logical objects in topological matter are also possible.The relative homotopy group �5(R; ~R) with the 5-formintegral N5 in (12) in terms of the Green's functionG(!; kx; ky; x; y)N5 = 14�3itr ZBZ d2k Z d2x Z d! �� G@[kxG�1G@kyG�1G@!G�1G@xG�1G@y]G�1; (19)describes the 2D skyrmions in 2D gapped topologicalsystems, such as 3He-A and planar phase. The quan-tum numbers of 2D skyrmions and the correspondingChern- Simons terms in the action have been consideredin [4, 5]. The relative homotopy group �7(R; ~R) withthe 7-form integral N7 in terms of the Green's functionG(!; kx; ky; kz ; x; y; z) describes the 3D skyrmions in the3D gapped topological systems.The mixed real-space and momentum-space topologycan be applied for skyrmions and solitons in relativisticquantum �eld theories such as GUT, QCD, electroweaktheory and theory of chiral and color quark matter. Inparticular, the �-term and axion electrodynamics [31]can be treated in the same manner as for 3He-B andTRI insulators, using integrals (4) and (2). The fermi-onic charges of skyrmions and other textures are relatedto the topological invariants expressed in terms of thefermionic propagator.This work is supported in part by the ERC (GrantNo. 240362-Heattronics) and the Academy of Finland,Centers of excellence program 2006{2011, and by theProgram \Quantum Physics of Condensed Matter" ofthe Russian Academy of Sciences.7. Appendix. In this appendix, we show howEq. (10) is obtained from the gradient expansion. By�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 5 { 6 2011



382 J. I. V�ayrynen, G. E.Volovikintegrating out the fermions in the path integral, we ob-tain a currentj
 = ��A
 iTr lnG = ietrZ d3kd!(2�)4 G�1@k
G; (20)which, at low energies, can be expanded in powers ofgradients. Using Wigner transformed (or quasiclassical)Green functions G and the Moyal product rule, we ob-tain a gradient series for the Wigner transformed G�1.From this series we will extract the part contributing tothe current j
 = e28�2 "��
�F��@��:This is second order in derivatives and we obtainj
=e22iF��trZ d3kd!(2�)4 @k
G �@[�G�1@k� ]@k�(G@k�G�1) �� G�1@k�G@k�G�1@[�G@k� ]G�1 �� G�1@[�G@k� ]@k�G@k�G�1 �� @k�G�1@k� �@[�G@k� ]G�1���12G�1@k�@[�G@k� ]@k�G�1� ;where G is evaluated in zero external �eld. For a linearHamiltonian we have @k�@k�G�1 = 0 and �nally obtainthe actionS = e216�2 Z d3xdt"��
�F��A
@��;@�� = 12�2itr ZBZ d3k Z 1�1 d! �� G@[�G�1G@k�G�1G@k�G�1G@k�G�1G@k�]G�1;which leads to Eq. (10).In exactly the same fashion, we obtain Eq. (17). Inthis case the current of Eq. (20) is obtained from the�rst order gradient expansion and readsj
 = e4�2 tr Z 1�1 d! ZBZ dkxG�1 �@[�G@k�]G�1� @k
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