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Topological invariants in terms of the Green’s function in momentum and real space determine properties
of smooth textures within topological media. In space dimension d = 1 the topological invariant N3 in terms
of the Green’s function G(w, k., z) determines the fermion number of the kink, while in space dimension d = 3
the topological invariant N5 in terms of the Green’s function G(w, ks, ky, k=, 2) determines quantization of Hall
conductivity in the soliton plane within the topological insulators.

1. Introduction. In the fully gapped topologi-
cal systems in even space dimension, the Chern-Simons
terms are well defined. The prefactors of these terms
are represented by topological invariants in momentum-
frequency space, which are expressed in terms of the
Green’s function and are robust to interactions (see, e.g.,
Refs. [1-6] for 241 systems; Refs. [6, 7] for 441 sys-
tems; and Refs. [8, 9] for systems in general 2n + 1
spacetime). These invariants determine quantization of
the parameters of the system, such as intrinsic Hall and
spin-Hall conductivity in 2+1 and 4+1 systems. For odd
space dimension the situation is more complicated, espe-
cially for time reversal invariant (TRI) systems, where
the suggested Chern-Simons term formally violates the
time reversal symmetry, see, e.g., discussion in Ref. [10].
Here we show that though these terms are not well-
defined for bulk topological matter, they well describe
the properties of smooth textures within the topologi-
cal matter. The well-defined topological invariants in
momentum-frequency space are expressed in terms of
the Green’s function are robust to interactions. They
also determine the quantization of the parameters of the
system, in a given case these are the quantum numbers
of the texture, such as the fermion number in 1+1 sys-
tem and quantized Hall or spin-Hall conductivity within
the smooth interface in the 3+1 systems.

The smooth textures are analogues of the topolog-
ical solitons in condensed matter systems with sponta-
neously broken symmetry. There are two types of topo-
logical objects in these condensed matter systems: sin-
gular topological defects (such as domain walls, quan-
tized vortices, hedgehogs and dislocations) and contin-
uous structures called topological solitons, skyrmions
and textures. As distinct from the singular topological

1) e-mail:jukka.vayrynen@helsinki.fi
2)e-mail: volovik@boojum.hut.fi

defects, which are described by conventional homotopy
groups, textures do not have singularities in the order
parameter fields determined on the vacuum manifold and
are described by relative homotopy groups (RHG), see
[11]. These homotopy groups 7, (R, R) deal with two
different manifolds of the order parameter: the points
within the soliton are mapped to the vacuum manifold
(moduli space) R = G/H, while the points outside the
soliton are mapped to the subspace R = G / H. The lat-
ter is restricted due to additional interaction which be-
comes important at large distances and which reduces
the symmetry G of the physical laws to its subgoup G. In
the class of planar topological objects, domain walls are
singular objects described by the group mo(R), while the
smooth textures, such as planar solitons and Bloch walls,
are described by the relative homotopy group 1 (R, R).

Analogues of such objects exist in topological matter.
The role of singularities in the order parameter fields
on the vacuum manifold is played by the Green func-
tion’s singularity in momentum space, such as nodes in
the energy spectrum. For example, the analogue of a
singular wall is an interface between the gapped bulk
states, which contains gapless fermions, while the ana-
log of a smooth wall is an interface, in which the Green’s
function has no singularity, i.e., within the nonsingular
object the system remains fully gapped. The electronic
structure of smooth textures is described by the relative
homotopy groups 7, (R, R) which deal with two man-
ifolds: the space R of the Green’s function within the
texture and its subspace R outside the texture. Outside
the texture the space of the Green’s function is restricted
due to some symmetry in bulk, while within the texture
this symmetry is violated or is spontaneously broken.
Examples of the bulk symmetry are time reversal sym-
metry, spin rotation symmetry, crystal symmetry etc.
Application of the RHG to classification of topological
media has been also discussed in [12].
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In this paper we consider smooth interfaces which
separate the bulk states of time reversal invariant
insulators and fully gapped superfuid systems, their
momentum-space topological invariants and the related
quantum numbers. The relative homotopy group de-
scribing the fully gapped interfaces in the d-dimensional
topological media is w41 2(R, R).

2. Domain walls and solitons in 3D topolog-
ical media. Let us consider examples of the singular
and continuous interfaces in the vacuum described by
Hamiltonian used in relativistic QFT:

ﬂ:rga-p+rlm1+rzm2. (1)

It represents a particle with a complex mass m =
= my + imsy. For real mass, ms = 0, the Hamiltonian
obeys time reversal symmetry and anticommutes with
the matrix 7. The vacuum of this fermionic field is
described by the 3D topological charge [13]

1
NK:ﬁtr [K Bzd?’k%ila[ka%?{ilaky'H}tilakz]% )
(2)

Here the momentum space integral is over Rs in transla-
tional invariant systems, and over the Brillouin zone in
crystals; K is the matrix anticommuting with H, which
in a given case is K = 7; we use antisymmetrization

1
fijo1 = -1 Z(_l)PfPin...
L4

over n indices. The invariant (2) is valid also for time
reversal invariant superfluids/superconductors, such as
3He-B. For the Hamiltonian (1) with ms = 0 one has
NE = m;/|m;|. The interfaces — domain walls and soli-
tons — are described by the coordinate dependent mass

H =130 -p+ mmi(z) + 2ma(2), (3)

where z is the coordinate normal to the plane of the in-
terface.

Singular walls: The singular interface is the domain
wall separating the bulk states with different values of
NX, within which the symmetry K is obeyed. For the
Hamiltonian (1) this means that the mass remains real
throughout the interface, ma(z) = 0, i.e., the time re-
versal symmetry is obeyed for the whole interface, while
the mass m; crosses zero and changes sign within the
interface, mi(—00) = —mgy(00). Since the bulk states
have different topological charges, they cannot be con-
nected adiabatically, and thus the domain wall necessar-
ily contains gapless fermion zero modes. That is why
such interface is considered as singular. It is the analog
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of the domain wall in ferromagnets in which magnetiza-
tion crosses zero value. The singular interfaces and the
gapless fermion modes inside them have been discussed
for superfluid 3He-B in [14, 15]. On the topological and
non-topological kinks and domain walls in Grand Uni-
fied Theories (GUT), see the book by Vachaspati [16].

Solitons and nonsingular walls: The nonsingular in-
terface is obtained when the mass becomes complex
within the interface, ma(2) # 0. The time reversal sym-
metry is violated within the smooth interface and the
spectrum becomes fully gapped everywhere. The inter-
face where the phase of m; + imsy changes by 7 is the
analog of the Bloch and Neel domain walls in ferromag-
nets, where the magnetization is nowhere zero and the
orientation of the magnetization continuously changes
across the wall. It is also the analogue of the topological
soliton in ®*He-A and He-B. Contrary to the singular
interfaces where the symmetry is restored in the core, in
continuos interfaces the symmetry is smaller than that
outside the interface. In relativistic theories, such in-
terfaces have been considered by Wilczek [17] and also
discussed in the book [16]. Wilczek paid attention to the
difference between the singular configuration which has
gapless modes, and continuous configuration, which is
fully gapped. For the gapless vacua in GUT this means
that there are more massless particles outside such an
interface than inside it [16].

3. 5-form invariant for smooth interface in 3D
topological media. In odd space dimension the con-
tinuous texture can be described by the topological in-
variant which characterizes the group mqy2(R, R). For
space dimension d = 3 one has the group 75 (R, R) with
the invariant

1 o0 o0
Ny = —_tr/ d3k:/ dz dw x
4:7'['32 BZ

— 00 — 00

X GOk, G ' GO, GG, G71G0,G1GO,1GT,  (4)

where z is coordinate across the interface. This invari-
ant in terms of the quasiclassical matrix Green’s function
G(k, z,w) is applicable to different d = 3 systems such
as the 3D topological insulators and superfluid 3He-B.
The 5-form integrals for topological media in terms of
Green’s functions have been discussed in Refs. [6, 18, 7].
The combined momentum space and real space topol-
ogy has been applied for description of the singular
topological defects and interfaces within the topologi-
cal media and fermion zero modes in these objects, see
[19, 20, 14, 6, 21, 18, 22], and now we discuss this for
continuous textures. For general continuous textures,
Ny may take any value, but it becomes integer or half-
integer for appropriate boundary conditions when the
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bulk states at z = oo and z = —oo coincide, or are
connected by symmetry.

As an example, consider Hamiltonian (3) with
mi(z) = My cosd(z) and ma(z) = Mysin¢(z), where
¢(2) changes from 0 to mn across the interface. The gap
is finite everywhere, and thus the integral (4) is well-
defined and equals Ny = n/2 sign(M; Ms). For n = 2k,
the states are the same on two sides of the soliton and
Ny is an integer. For n = (2k + 1), the bulk states have
opposite sign of mass m; and the invariant Nj is a half
integer. If time reversal symmetry is not obeyed in the
bulk, the integral may take arbitrary values.

It is important that the invariant N5 is determined
both by the states of bulk topological matter outside the
texture and by the internal structure of the texture. This
invariant is expressed in terms of the Green’s function,
and thus is robust to perturbations such as interactions.
In interacting systems the single- particle Hamiltonian,
such as that which enters (2), is a secondary object. It
is the effective Hamiltonian which belongs to the same
topological class as the original interacting system, and
thus can be adiabatically obtained from the interact-
ing system. For example, one can consider the inverse
Green’s function at zero frequency as effective Hamil-
tonian, Heg(k) = G 1 (w = 0,k).

The invariant N5 can be also applied to 3D topolog-
ical insulators. Let us consider the model Hamiltonian
for a TRI insulator (see e.g. [23]):

H= 7unu(k)a Yo =T1, Vi = 0473, (5)

where n, is a 4-vector and in a relativistic theory the
matrices must be multiplied by 71 to get the conven-
tional y-matrices. The particular 4-vector discussed in
[23] is:

H = —Ar3(0gsink, + oy sinky + o, sink,) + rymq (k),

(6)

where mq (k) = My — ¢(cosk, + cosk, + cosk,). Inside
the texture one has

Hiexture = —AT3(0p sink, + oy sink, + o, sink,) +
+ rima(k, 2) + mma(k, 2). (7)

One may choose, for example, the following texture:
mi(k, z) = M cos ¢(z) — t(cos kg + cosk, + cosk,) and
ma(k, z) = My sin¢(z), with ¢ changing from 0 to mn
across the interface. For 2t < |Mj| < 3t and large
enough |M>|, one obtains N5 = n/2 sign(M; My).

4. 5-form invariant, f-term and QHE. For the
3D insulators the effects similar to those in axion QED
take place. A f-term in the electromagnetic action has

been proposed for the time reversal invariant (TRI) in-
sulators, see, e.g., [24, 25, 23]:

62 2

_ afBuv 4 _ € 4
_WE "/d:L‘HFagFM,,—H/d:L'HEB
(8)

In bulk insulators, 6 is a space-time constant, and this
term does not make sense, since the action becomes a
total derivative. Moreover, the #-term violates time re-
versal invariance and its application to TRI systems is
tricky, though in a periodic space-time the situation is
clearer [26]. However, all these problems vanish when we
discuss the properties of a smooth texture within which
the time reversal invariance is violated. While the para-
meter 6 itself is ill-defined, the Hall conductivity in the
plane of the interface is a well-defined quantity, though
formally according to (8) it can be related to the change
of 6 across the interface (see [27]) :
Ozy  B(+00) — 6(—00) e?

= o = — 9)

oH 2T ’ b’

Using the gradient expansion of the action, the Hall con-
ductivity in the interface is expressed in terms of the
invariant N5 (see Appendix):

Ozy
—= = Ns. 10
- 5 (10)

Applying this to the Hamiltonian (3), where 6 is related
to the complex mass, ma/m; = tan [17], for a texture
where m2 changes from —myg to mg, one obtains

o 1 mo *®
Zry _ 3,l;r/ d3k/ dmz/ dw X
OH 4733 BZ —mo —50

X GO, G ' GOk, G ' GOk, G G0LG GO, G (11)

This transforms to the integer-valued Ny in the limit
of large mgy. The same is applied for the more general
Hamiltonian % = y,n, (k) + ysm2, v5 = 7.

According to (10), the Hall conductivity is deter-
mined both by the properties of bulk states outside the
interface and by the internal structure of the interface.
For the texture inside a TRI topological insulator, i.e.,
in the system which is TRI at z = fo00, the Hall conduc-
tivity is quantized. Note that in this system the integral
Ny is a topological invariant, which belongs to the group
Z,i.e., it can take any integer or half-integer value, as
distinct from the Zs nature of the bulk insulator, where
the parameter @ is ill defined. In other words, the group
ms = 7 with its invariant N5 describes the topology of
the solitons within the topological insulator, rather than
the insulators themselves.

5. 1D skyrmions and their topological and
quantum numbers. The relative homotopy group
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m3(R, R) with the 3-form integral N3 in terms of the
Green’s function G(w, kg, z)

:—tr/ dm/ dw/ dk, %
BZ

Xga[k,;g lgawg lgaz]g— ) (12)

describes 1D skyrmions in 1D gapped topological sys-
tems. These solitons have quantum numbers such as
fermionic charge and quantized electric charge [28—30].
In general these charges are expressed in terms of the
topological charge N3. Let us now consider the electric
charge. Typically this charge is related to 1D 6-term in
the action,

1 Q,
=5 / dzdtfe®P o, Ag. (13)

Again, this f-term does not make much sense for con-
stant 6, but it becomes meaningful for the inhomoge-
neous order parameter within the soliton where the time
reversal symmetry is violated. Assuming Ay is constant
in space, one obtains the solitonic electric charge:

_ iﬁ /dwdtBZGAo = % /dt(0(+oo) — 6(—00)) Ao,
(14)

0(+00) — §(—o00) .

27

q= (15)
As distinct from the ill-defined @, the fermionic charge
of the smooth structure is well defined. It is expressed
in terms of the Green’s function, and — using the gra-
dient expansion — in terms of the quasiclassical Green’s
function G(w, kg, ):

1 oo
q:4—ﬂ_2tr/d:1c/_Oo dw/BZ dk, (16)
GO, G 'G0,G G, G 1,

which is the invariant N3. Thus one obtains the gen-
eral relation between the Green’s function topological
invariant N3 characterizing the smooth structure and its
fermionic charge q:

Eq. (17) is analogous to equation (10) for quantization
of Hall conductivity in the smooth interface within the
3D TRI topological insulators. It is valid for interacting
systems as well.

Consider as an example the soliton in the following
1D system [24]

A

H = T3Pz +7mmy + Ta2Mma, (18)
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which is time reversal invariant for ms = 0. For the
soliton with my(z) = M cos p(z), ma(z) = M sin p(z),
where ¢ is going from 0 to mn, one obtains N3 = n/2
and thus the charge of this soliton must be ¢ = n/2.
The fermion number of the domain wall with ms = 0,
mi(+00) = —mj(—oo) has been discussed by Jackiw
and Rebbi [28], who got the fermionic number 1/2, i.e.
g = +1/2. This agrees with the topological charge
N3 = £1/2 of the soliton obtained by softening of the
domain wall when the imaginary mass is added. Such
softening does not change the boundary conditions at
infinity and thus the fermionic charge may change only
by integer number — the number of fermions.

6. Discussion. We found a connection between
topological invariants describing the smooth textures in-
side the topological media and their quantum numbers.
We considered only one type of textures in (14+1)D and
(3+1)D media. The other types of the continuous topo-
logical objects in topological matter are also possible.
The relative homotopy group ms (R, R) with the 5-form
integral N5 in (12) in terms of the Green’s function
G(w, kg, ky, 2,y)

_ 2 2
Wtr/l;zd /d /dwx

X GO, G GOk, G 'G0.G 1GB.G GO G, (19)

describes the 2D skyrmions in 2D gapped topological
systems, such as 3He-A and planar phase. The quan-
tum numbers of 2D skyrmions and the corresponding
Chern- Simons terms in the action have been considered
n [4, 5]. The relative homotopy group (R, R) with
the 7-form integral N; in terms of the Green’s function
G(w, kg, ky, k., 2,y, 2) describes the 3D skyrmions in the
3D gapped topological systems.

The mixed real-space and momentum-space topology
can be applied for skyrmions and solitons in relativistic
quantum field theories such as GUT, QCD, electroweak
theory and theory of chiral and color quark matter. In
particular, the f-term and axion electrodynamics [31]
can be treated in the same manner as for *He-B and
TRI insulators, using integrals (4) and (2). The fermi-
onic charges of skyrmions and other textures are related
to the topological invariants expressed in terms of the
fermionic propagator.
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No. 240362-Heattronics) and the Academy of Finland,
Centers of excellence program 20062011, and by the
Program “Quantum Physics of Condensed Matter” of
the Russian Academy of Sciences.

7. Appendix. In this appendix, we show how
Eq. (10) is obtained from the gradient expansion. By
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integrating out the fermions in the path integral, we ob-
tain a current

3
i’ = %zﬁlnG zetr/ Cz;::ij 10, G,  (20)

which, at low energies, can be expanded in powers of
gradients. Using Wigner transformed (or quasiclassical)
Green functions G and the Moyal product rule, we ob-
tain a gradient series for the Wigner transformed G 1.
From this series we will extract the part contributing to

the current
2
)

§7 = —=e*PF, 5050.

This is second order in derivatives and we obtain

2 d3kd
=5 Fugtr / 3 )“’ak G {0156~ 01y 0. (GO, G 1) —

— G 0k, G0k, G 015G0k,G "
— g_la[,;gaks]@kagakﬁ G-
— Ok, G Ok, (015G0k;1G7") —

1
—nglakﬁ 0(59 Ok Ok gl} )

where G is evaluated in zero external field. For a linear
Hamiltonian we have 0,0, G~" = 0 and finally obtain
the action

2
S = T / d*zdte*P"° F,5 A, 050,

— 3
650 2—2Ztr /E;Zd / dw X

X GO5G ' GOk, G GOk, G GO, G GO, 1G 7,

which leads to Eq. (10).

In exactly the same fashion, we obtain Eq. (17). In
this case the current of Eq. (20) is obtained from the
first order gradient expansion and reads

e o 1
= —tr/ dw/ dk,G~
42 — BZ

012Gk, G") 0, G.
(21)
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