Pis’'ma v ZhETF, vol. 93, iss. 6, pp. 383 -388

© 2011 March 25

Demonstration of quantum Zeno effect

in a superconducting phase qubit

Z.-T. Zhangt*, Z.-Y. XuetV

+ Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering,
South China Normal University, 510006 Guangzhou, China

* National Laboratory of Solid State Microstructures, School of Physics, Nanjing University
210093 Nanjing, China

Submitted 11 January 2011
Resubmitted 24 January 2011

Quantum Zeno effect is a significant tool in quantum manipulating and computing. We propose its observa-

tion in superconducting phase qubit with two experimentally feasible measurement schemes. The conventional

measurement method is used to achieve the proposed pulse and continuous readout of the qubit state, which

are analyzed by projection assumption and Monte Carlo wave-function simulation, respectively. Our scheme

gives a direct implementation of quantum Zeno effect in a superconducting phase qubit.

Quantum Zeno effect (QZE), proposed by Misra and
Sudarshan in 1977 [1], is a paradigm showing that quan-
tum physics is counter-intuitive. It predict that if the
state of a unstable or oscillating quantum system is mea-
sured frequently to see whether it still stay at a initial
state, transitions from the initial state to other states will
be suppressed or even inhibited. Since then, many ex-
citing progresses have been made both theoretically and
experimentally. In the theoretical side, physicist inter-
pret it with wave-function collapse assumption in early
days [2, 3], which is shown to be not necessary [4]. Later,
it was generalized in a few different ways. Concerning
the measurement, it can not only retard incoherent de-
cay but also coherent Rabi oscillation. On the other
hand, for unstable system, frequent measurements may
even also enhance the decay rate under some conditions,
which is the so-called quantum anti-Zeno effect [5—7].
As to the readout aspect, one can adopt pulse or con-
tinuous measurements [8, 9]. In the experimental side,
QZE have been demonstrated in many systems, such as
trapped ions [3], optical lattice [5], Bose-Einstein con-
densate [9], microwave cavity [10], etc.

Studying QZE is very important. Beyond the in-
terest of fundamental physics, it has many practical
applications. These includes reducing decoherence in
quantum computing [11 —13], efficient preservation of
spin polarized gases [14], keeping system stay in ob-
ject subspace [15]. There are interesting explorations
of applications in superconducting qubit systems, e.g.,
generation of entangled state [16] and implementation
of quantum switch [17,18]. Recently, the possibility of
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observing QZE in superconducting qubits is proposed
[19, 20]. However, demonstration of QZE in supercon-
ducting system is very difficult because of the lacking of
competent measurement method. Conventionally, it was
observed with quantum non-demolition (QND) readout.
In circuit Quantum Electrodynamics (CQED), state of
the qubit could be imprinted on the cavity field state in
a QND readout, but the signal-to-noise ratio is so low
that we must repeat considerable times to complete the
QND readout. Thus, a recent experiment [21] demon-
strate QZE qualitatively in CQED can not guarantee its
practical applications due to the noise. Here, we suggest
experimental feasible schemes to demonstrate QZE in a
superconducting phase qubit with both pulse and con-
tinuous measurement strategy instead of QND readout.

Since the quadratic decay behavior (prerequisite for
QZE) in the initial decay stage of the qubit excited
state has not been observed yet, suppressing of en-
ergy relaxation in superconducting qubit is not acces-
sible technically. Thus, we here focus on another case of
QZE, i.e., suppressing the unitary evolution of the phase
qubit. There are at least two feathers that differenti-
ate our schemes from those implemented in other sys-
tems. Firstly, the measurement method used here is the
so called selective measurement instead of QND read-
out which is still a big challenge to realize continuous
measurement in superconducting qubits system. Sec-
ondly, our schemes are immune from the relaxation of
the qubit by using an appropriate initial state. That is
rather necessary in the context of the very short energy
relaxation time of superconducting qubits. It should be
noticed that, besides the function of demonstrating the
basic phenomenon of quantum mechanics, our proposal
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can lay a foundation for the applications of QZE in quan-
tum information processing, e.g., Ref. [16].
Superconducting phase qubit usually consists of a
large current-biased Josephson junction (JJ). When the
bias current approaches its critical current, there exist
several no-degenerate energy levels in each well of the
washboard potential of the qubit, see Fig.1a. The lowest
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Fig.1. Energy levels in the potential well when measure-
ment pulses is off (a) and on (b); (¢), indication of the bias
of the phase qubit, including microwave driving I,.., (up-
per) and dc bias current with measurement pulses (down)

two states act as a qubit, which is the so-called phase
qubit. Experimentally, it can be easily controlled by
bias cunrrent containing both dc and microwave com-
ponents [22].

An advantage of phase qubit over other types of
superconducting qubit is its built-in readout. It relies
on the possibility that the qubit states in the potential
can tunnel through the potential barrier into continuum
outside. The tunneling rate of one level usually differ
dramatically from the other one at least two orders of
magnitude [23]. So the ground and excited state can be
mapped to no-tunneling and tunneling case, respectively.
Experimentally, one can lower the barrier so that the ex-
cited state of the qubit can tunnel through the barrier
quickly but the ground state can’t, see Fig.1b. There-
fore, one can add a pulse to the bias [24], see Fig.lc,
so that the height of the barrier only fitting the excited
qubit state.

Now, we begin our pulse measurements scheme.
When operating the phase qubit for quantum gates, the
bias is tuned to an appropriate value so that there are
three or four levels in the potential well as shown in
Fig.la. In this case, neither of the qubit states could
tunnel outside. Drive the phase qubit with a resonant
microwave, the qubit will oscillate between the ground

and excited state with a period of 27 /Q. If the initial
state is the ground state, after half a period, the qubit
is driven to the excited state. To demonstrate QZE, we
superpose a series of short uniform measurement pulses
to the qubit bias, see Fig.1lc. Because the pulse dur-
ing time 7 is much smaller than the oscillating period,
we consider that the probe pulse is instantaneous. To
be more specifically, in half a period of Rabi oscillation
T = 7/, there are n evenly distributed pulses with the
time interval as dt = T'/n.

According to the Hamiltonian, we can calculate
straightforwardly the population of the ground state
|0) at ¢ = 0¢, before the first pulse, as P, (6t) =
= cos? (m/2n) . After the first probe, the probability of
no-tunneling P}, i.e, the probability of the qubit collaps-
ing to ground state, equals to P, (dt). So, after all the
nth probes, the survival probability of the initial ground
state |0) is P = (P})" = [cos? (7/2n)]" . When n > 1,
making the proximation of cos (£) ~ 1 — (7/2n)” and
using the relation nli_)n;o(l —z/n)" = e, one gets
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We have plotted the survival probability with both ex-
pressions in Fig.2, which shows that the approximation
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Fig.2. Survival probability of |0) in a half period of Rabi
oscillation vs. number of probes. Red dots is plotted
with Py = [cos’(w/2n)]", and solid line with Py =
exp(—n/4n). The approximation to exponential function
is perfect when n > 10

to exponential function is perfect when n > 10. Obvi-
ously, with the increasing of n, the survival possibility
of initial state tends to 1, which is one kind of QZE.
Although it is similar with the experiment with
trapped ions [3], there has significant difference between
them. In their experiment, they use a series of QND
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measurements during the Rabi oscillation and measure
the final state of the trapped ions at the end of a half
oscillating period. Therefore, even if some measurement
results are not the initial state, the qubit still evolve ac-
cording to Hamiltonian after the measurements. Thus,
there exist a small probability to return to the initial
state at last. Instead, we employ a selective measure-
ment approach to obtain the probability that all the
probes get the same result, i.e, the initial ground state.
This is achieved by the fact that if the result is other
than the initial state, the JJ will switch to a non-zero
voltage state, which means that the state of qubit will
be destructed and stop evolve after the probe. It should
be noted that our scheme exhibit what Misra and Su-
darshan first called QZE [1].

It is well known that when the interval time among
the measurement pulses is very small, the survival prob-
ability of the initial state reduces exponentially with the
increasing of time. Similarly, we can easily get

ro=meeo|(-52)d], @

with t = ndt. We have plotted Py(t) with 6t = 7/509,
w/100Q2 in Fig.2. Instead of normal Rabi-type oscilla-
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Fig.3. Survival probability of |0) vs. time. Blue solid
line is showing Rabi oscillation without any decay. Green
and black line is plotted according to cos®™(Qdt/2) with
0t = w/50Q, 7/100Q2, respectively. Purple circle and
red dot denote exp((—Q?8t/4)t) with corresponding 8t as

above

tion, the initial state |0) decay exponentially with an
effective characteristic time ¢.:
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It is a very important characteristic parameter show-
ing that to what extent the probes suppress the state
transition. When d¢t = n/50Q, t, = 200/, which is
much larger than the characteristic time of Rabi oscilla-
tion 1/Q, we can also see from Eq. (3) that the decay
time is inverse function of §t.

Then, we move to the feasibility of the above pulse
measurements scheme. Theoretically, the more fre-
quently a qubit state is observed, the more likely it will
be inhibit to transition to other state from the initial
state. However, in practice, there are three main ob-
stacles stopping us from beating the QZE limit. Firstly,
measurement fidelity is always lower than unit; secondly,
each measurement is not instantaneous but inevitably
lasts for a finite period of time; and finally, the finite
decoherence time of the qubit.

The measurement of phase qubit state is achieved by
using its macroscopic quantum tunnel. The imperfect
fidelity is induced from the finite ratio of the tunneling
rates of |1) and |0) states. It’s believed that the ratio
is typically around 200 [23]. During the measurement
pulse, the tunneling possibility from the excited state
is close but a little bit lower than 1, while that of the
ground state is a small but nonzero quantity. However,
this measurement have single shot readout fidelity up to
96% theoretically [23], which is the highest among all the
known readout approaches of superconducting qubits.

The other bothering factor is that the readout can’t
be accomplished instantaneously. In a measurement
process, the added probe pulse alters the level struc-
ture of the qubit, making it detuning from the driving
microwave. The question how to judge the suppression
of the oscillation comes from QZE or from the reduce
of the effective driving time is unavoidable to any ex-
perimental scheme of demonstrating QZE. Actually, for
larger measuremnt times n, the sum of the measurement
periods is not negligible compared to the duration of the
whole process. Therefore, part of the decrease in the
transition probability is due to the decrease in the time
during which the qubit is resonant driven. For an ex-
treme case of n = 100, the sum of the measurement
periods is 50% of the total time T'. Even for this case,
the survival probability of the initial state is as high as
97%, which is much higher than that of sole resonant
driven. So we can safely conclude that the suppression
of the oscillation mainly comes from QZE.

Finally, the decoherence including relaxation and
pure dephasing of the qubit is usually considered as
bottle-neck for illustrating QZE. From now on, we would
clarify why it can be neglected in our scheme. On the
one hand, pure dephasing can be ignored after notic-
ing that the interval between two nearest measurements
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is very short compared with the dephasing time which
could be as long as hundreds of ns. On the other hand,
the lifetime of an average phase qubit is T3 = 600 ns. If
T can be much smaller than T;, to avoid the decay of
the excited state, then the experiment will be able to car-
ried out easily. But that is not necessary for observing
QZE. The reason is that before each probe, the average
population of excited state is much lower than 1, i.e.

szl/ sin?(Qt/2)dt = Q*r?/12 < 1. (4)
T Jo

To be more specifically, P; ~ 0.07 for n = 32, i.e., each
probe will project the qubit sate to the ground sate sub-
space with high probability. Therefore, the qubit state
can only has a small probability to excite to the excited
sate, which means we will have a much longer effective
lifetime for the excited state in our scheme. If we conser-
vatively choose T' = T; = 600 ns and each probe pulse
lasts t, = 3 ns, then the ratio between the measure-
ment time and the total oscillating time is T'/t, = 200.
In the trapped ions experiment, the quantity is about
100. With a larger ratio, one can implement more probes
within a half period of Rabi oscillation. So, we strongly
believe that QZE can be verified definitely in phase qubit
with our pulse measurement method.

Next, we propose to demonstrate QZE in a phase
qubit by continuous measurement. Theoretically,
Heisenberg uncertainty principal limits how frequently
a measurement can be performed. However, one could
also adopt continuous measurement approach to observe
QZE. The main difference of the continuous measure-
ment approach from the above pulse measurement
scheme is that the bias is fixed to only allow the excited
state to tunnel outside during the oscillation of the qubit.
This is reasonable since the tunneling rate of the excite
state is two orders of magnitude larger than that of the
ground state [23]. Furthermore, the tunneling rate of the
ground state is also smaller than the Rabi frequency of
the qubit in our parameter figuration. Therefore, we do
not need to take the rare tunneling event of the ground
state into account. The system is initially prepared
in the ground state; a resonate microwave is driving
the phase qubit between the ground and excited state.
The life time of the excited state due to spontaneous
decay is much longer because quantum tunneling is
very fast. Neglecting the spontaneous decay term, we
get a Hamiltonian describing this dissipative system in
interaction picture as

0
Hr= ( Q —il"/2> ' (%)

Before going into QZE, we would like to discuss how
continue measurement works. In our case, the excited
state has a tunneling rate I', but the ground state can’t
tunnel, which means in a short time interval ét, the ex-
cited state tunnel with the possibility of I'dt. If a tun-
neling count, we know the qubit state before tunneling is
the excited state; otherwise we can’t discern the ground
and excite state, but what we can get from the interro-
gation is that the qubit is more likely in ground state at
the end of §t than at the beginning. This point is the the
essential of Monte Carlo wave-function method, which
is developed for simulating open system [25—27]. Below
we use this method to show QZE and compare it to the
analytical result.

Back to the Hamiltonian in Eq. (5). If I' = 0, the
qubit is absolutely populates |1) at ¢ = T = m/2Q.
Now, we suppose 2 < I'. The non-Hermitian Hamil-
tonian can be simulated with Monte Carlo wave-function
method. The procedure can be summarized as follows:
(1). Discretize the time interval T by a very small time
step dt. (2). Determine the probability of tunneling
P = T'6t|[(1|y)|?, choosing dt to make sure P < 1. (3).
Obtain a random number 7 distributed uniformly be-
tween zero and one, and compare it with P. (4). If
r < P, there is a tunneling, the system switch to finite
voltage state, and this run is end. Then start next run
from step 1. If » > p, no tunneling takes place, the
qubit evolves under the influence of the non-Hermitian
Hamiltonian described by Eq.(5) and the qubit state at
the end of §t is

tHot tHot
- S5 w0 - =

9 (t +6t)) = (1 QNI

(6)

where we have approximately expand the the evolution
operator to first order of dt. (5). Repeating the process,
we can get a trajectory of the qubit state.

It is obvious that if no tunneling appears in the whole
period T, the qubit state will totally stay in the state of
|0) at the end of the probed oscillation. So, the survival
probability of a initial state is same as that of no tun-
neling during the period. We simulate many times for
a certain I' to obtain survival probability Py. Further-
more, we have studied the relation between Py and I' as
shown in Fig.4.

The Hamiltonian in Eq. (5) can also be solved ana-
lytically. The evolution operator of the dissipative two-
level system has the form of

: h-
U = e iHrte st cosh(ht) — ¢ 7

sinh(ht)|,  (7)
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Fig.4. No-tunneling counts vs tunneling rate of the excited
state. Monte Carlo wave-function simulation parameters
are @ = 27 x 1 MHz, T = n/2Q and T € [50,500] MHz.
The blue circles are data from simulation, and the red
solid line is plotted according to the analytical expression
in Eq. (8)

where h = /(['/4)2 — Q2 and we have assumed that
['/4 > Q. If the initial state is |0), then the survival
amplitude is function of time and has the form of

Ap(t) = (Ole~*Hrt]0) =

= e~ 4t |cosh(ht) + % sinh(ht)| . (8)
We have also plotted the survival probability of the ini-
tial state with this analytical expression in Fig.4. We can
see the Monte Carlo wave-function simulation is agree
with the analytical result perfectly. More importantly,
they both imply QZE as explained in the following. With
the increasing of the excited state tunneling rate, the no-
tunneling counts approaching to 1000, which is the total
simulation runs’ number. We conclude that the survival
probability of the initial state |0) is more strengthened
with larger tunneling rate of the excited state. That is
the essential meaning of QZE of a system measured con-
tinuously.

Additionally, we can also investigate the relation of
pulse and continuous scheme in the future experiment.
Theoretically, it could be proved that if the effective
decay times of the initial state in the two schemes are
the same, the interval between two sequential measure-
ments in pulse scheme and decay rate of the excited state
in continuous scheme should satisfy the relation [8] of
6t -T' = 4. That is an important relationship between
the two schemes.

We have proposed two schemes to observe QZE in
a superconducting phase qubit: pulse and continuous
2011
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measurement schemes. They are easy and feasible for
up-to-date technique. Our result show that QZE can be
demonstrated with the schemes more clearly than the
trapped ions experiment. Since QZE is essential in the
implementation of quantum information, the generaliza-
tion of the proposed scheme to other kinds of supercon-
ducting qubits [28, 29] is desirable.
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