
Pis'ma v ZhETF, vol. 93, iss. 8, pp. 477 { 481 c 2011 April 25Adsorption of polymer chains at two impenetrable interfacesI. V.Gerasimchuk1), V. S.Gerasimchuk+, J.U. Sommerr�Institute of Magnetism, Nat. Acad. Sci. of Ukraine and Min. Edu. Sci. of Ukraine, 03142 Kyiv, Ukraine+National Technical University of Ukraine \Kyiv Polytechnic Institute", 03056 Kyiv, UkrainerLeibniz Institute of Polymer Research Dresden e.V., D-01069 Dresden, Germany�Institute for Theoretical Physics, Technische Universit�at Dresden, D-01069 Dresden, GermanySubmitted 24 February 2011We study the problem of adsorption of polymer chains in a system containing two impenetrable attractinginterfaces within the mean-�eld approximation. We �nd the exact solution of this mean-�eld polymer adsorp-tion problem that is controlled by a single scaling variable describing the coupling between the impenetrableinterfaces due to the polymer chains. At the saturation point we obtain the total number of adsorbed monomers,the total energy of the system and the force acting between impenetrable interfaces that is turned to be strictlyattractive and monotonously decaying towards zero for increasing distance between the interfaces.The problems of adsorption of polymer chains atinterfaces and surfaces have always been a focus ofattention of theoretical and applied polymer physics.The understanding of physics of real polymers at sur-faces/interfaces can lead to novel applications [1{3].From a practical point of view, adsorption phenom-ena in polymeric solutions are very important for suchprocesses as lubrication, adhesion and surface protec-tion, as well as interaction between interfaces and poly-mers. The excluded volume e�ects lead to saturatione�ects at surfaces or interfaces.The e�ects of excluded volume interactions can beunderstood using mean-�eld concepts [4]. This approachhas been applied already to the formation of adsorptionlayers onto solid surfaces, see [4], and to the interac-tion between two solid surfaces propagated by adsorbedpolymer layers [5, 6]. Using mean-�eld arguments ithas been shown by de Gennes that forces between im-penetrable interfaces mediated by adsorbing polymers inthermal equilibrium are always attractive [7]. Using arenormalized free-energy functional, de Gennes has alsoextended the mean-�eld approach to incorporate cor-relation e�ects in good solvent conditions. Generally,the mean-�eld model can be considered as a versatiletool to understand the essential e�ects of excluded vol-ume interactions in many chain systems under geomet-ric constraints, boundary conditions and external poten-tials [4, 8].In our previous work [9] we studied the problem ofadsorption of polymer chains in the system of two pen-etrable interfaces within the mean-�eld approximation.1)e-mail: igor.gera@gmail.com

The saturation state of the polymer system in the lim-iting case of zero bulk concentration was investigated.We obtained a non-monotonous behavior of the amountof adsorbed polymers as a function of the distance be-tween the interfaces for such a system. At the saturationpoint, we found also the total energy of the system andthe force acting between the interfaces.In the present Letter we study the other case, viz., theadsorption of a polymer chain con�ned by two impene-trable attracting interfaces (hard walls) and compare theresults with those obtained in [9] for the system of twopenetrable interfaces. Such a problem has been inves-tigated before (see [7, 10]). We �nd the exact solutionfor this mean-�eld polymer adsorption problem withinthe ground-state dominance approximation (GSDA) andinvestigate the saturation behavior of a polymer chain insuch environments.The nonlinear equation describing such a system isthe corresponding Edwards equation [11] (the statisticsof a polymer chain is dominated by the ground statesolution of this equation):�u(x) = �a26 d2u(x)dx2 + Uext(x)kBT u(x); (1)where u(x) is the part of the state function of the poly-mer chain corresponding to the eigenvalue �, a is thelength of a statistical Kuhn segment, Uext(x) is the po-tential energy of a segment at the position x, and kBTdenotes the usual product of Boltzmann's constant andabsolute temperature. For simplicity, we use only onecoordinate because of the symmetry of the potential. Wewill study parallel plane interfaces where the localizationtakes place in the direction perpendicular to them.�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 7 { 8 2011 477



478 I. V.Gerasimchuk, V. S.Gerasimchuk, J.U. SommerThe ground state dominance argument can be easilyseen from the formal solution of the partition functionfor the chain given by the formulaZ(x; x0) =Xk expf�N�kguk(x)uk(x0); (2)where the index k counts the various solutions of Eq. (1).Now, for large values of N the lowest value for �, theground state solution, dominates the partition function.In the following we will only consider the ground statesolution, so we drop the index k for simplicity.In the presence of two impenetrable interfaces(traps) and in the absence of excluded volume e�ectsthe external potential Uext(x) can be written asUext(x) = �kBT � � � [�(x+ d) + �(x � d)]; (3)where the interfaces are characterized by the value ofthe parameter �; 2d is the distance between interfaces.Note, that the parameter � has the dimension of a lengthscale.Then, Eq. (1) can be rewritten in the following form:�u(x) = �a26 d2u(x)dx2 � �[�(x+ d) + �(x� d)]u(x):(4)The x axis is directed perpendicular to the interfaces.The solution of Eq. (4) reduces to the solution of thecorresponding homogeneous equationa26 d2u(x)dx2 + �u(x) = 0 (5)in the region between the interfaces with the followingboundary conditions at x = �d:u j�d+0= u j�d�0; (6)dudx j�d+0 �dudx j�d�0= � 6a2�u j�d : (7)If we describe the real chain in a self-consistent �eld,we suppose the interactions between monomers are re-pulsive and local. The presence of other segments pro-vides repulsive potential proportional to the density c(x)[4, 12, 13]: Uev(x) = kBT � � � a � c(x); (8)where � is the (dimensionless) excluded volume para-meter. Consequently, one can describe each chain as anideal chain subjected to an external potential Uev(x).The density c(x) is proportional to c(x) � ju(x)j2 for

ground state dominance [4]. Thus, Eq. (1) can be rewrit-ten as follows:�u = �a26 d2udx2 + �ajuj2u+ Uext(x)kBT u: (9)In the presence of two impenetrable interfaces theexternal potential Uext(x) takes the form (3) and thenonlinear equation for a real polymer chain takes thefollowing �nal form:�u = �a26 d2udx2 + �ajuj2u� �[�(x+ d) + �(x� d)]u:(10)Rescaling the variables according to:2j�j�! �; 2p3apj�j�! �; xl ! x; (11)where l = a=p3j�j is the excluded volume length (EV-length), as well as introducing the dimensionless statefunction according to pau! u, we can rewrite the sta-tionary nonlinear Schr�odinger equation (10) in the fol-lowing rescaled form:�u = �d2udx2 + 2�juj2u� �[�(x+ d) + �(x� d)]u; (12)where the sign function � = �1 (excluded volume � > 0and � < 0, respectively) stands for repulsion and attrac-tion between monomers, respectively. In order to returnto the initial parameters of the system the transforma-tions (11) have to be applied once.The Lagrangian density corresponding to Eq. (12)has the following form:L=� ����dudx ����2��juj4 + �[�(x+ d)+�(x � d)]juj2 + �juj2:(13)The solution of Eq. (12) reduces to the solution of thecorresponding homogeneous equationd2udx2 + �u� 2�juj2u = 0 (14)in the region between the interfaces with the followingboundary conditions (compare with (6),(7)):u j�d+0= u j�d�0; (15)dudx j�d+0 �dudx j�d�0= ��u j�d : (16)As the ground state is dominant, we can omit themodulus and rewrite Eq. (14) in the formd2udx2 + �u� 2�u3 = 0: (17)�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 7 { 8 2011



Adsorption of polymer chains at two impenetrable interfaces 479Our physical system corresponds to the case of therepulsion between monomers � = +1 (excluded volume� > 0) and the attraction of monomers by the interfaces(� > 0). The monomers are con�ned between impen-etrable interfaces and cannot penetrate through them.Consequently, the density in the region outside the slitbetween interfaces is equal to zero. Because the groundstate is dominant, we are only interested in the symmet-ric solution which in the region between the interfaces(jxj < d) has the following form (compare with the so-lution in [9]): u(x) = q0�cn(�x; q) : (18)Here the parameters � is equal to� = �=p2q2 � 1; (19)where � = p��: (20)The function cn(�x; q) is the Jacobi elliptic function withmodulus q; q0 = p1� q2; the elliptic modulus q variesin the range from 1=p2 to 1.The advantage of our method to compare with otherapproaches is that we deal with the exact solution. Thismakes it possible to consider all piecewise constant po-tentials in a straight forward manner. The solution (18)is a one-parameter and is completely characterized bythe value of the parameter � (or �).Equation (12) requires the condition of normaliza-tion that de�nes, in fact, the total number of monomersin the system per (dimensionless) unit area:N = Z +1�1 u2(x)dx = Z +d�d u2(x)dx: (21)Indeed, in the standard framework of the mean-�eld ap-proach all monomers in the system are considered to be-long to a single chain and particular e�ects of the chainends are ignored.Note that in the nonlinear case the normalizationleads to the relation between the parameters � andN (or� andN). Substituting our solution (18) into the integral(21) we can �nally obtain the dependenceN = N(�) andthe inverse dependence � = �(N) (or � = �(N)). Forour system (� > 0;� > 0) we arrive at the followingexact result:N = 2� � sn(�d; q)dn(�d; q)cn(�d; q) � E(am(�d; q); q) + q02�d� ;(22)

where E('; q) is the elliptic integral of the second typeand am(�; q) = arcsin[sn(�; q)] is the elliptic amplitude.Let us study the behavior of our system at the satu-ration limit : �! 0 (or � ! 0): (23)This case corresponds to the situation when the totalnumber of monomers tends to its maximum value. Atotal number of monomers greater than the maximumvalue Nsat, corresponding to the boundary of the bandof linear bulk waves � = 0, can not be localized in thesystem.It was shown in Ref. [9] that in this limit casewe come the following expression for the parameter q:q � 1=p2. Again, we have the same equation for thevariable �, as for the system in [9]:�2cn3(�d; 1=p2) + 2�2cn(�d; 1=p2)� 2p2�� = 0:(24)Introducing new scaling variables according tog� = �=� and y = �d; (25)it is possible to reduce the parameter � in the equation(24). After the substitution of the variables (25) in theEq. (24) we obtain the following equation with the formalsolution g�(y):g2�cn3(g�y; 1=p2) + 2cn(g�y; 1=p2)� 2p2g� = 0:(26)Further we shall use the function g�(y) for the calcula-tion of the physical characteristics of the system, suchas the number of monomers trapped between attractinginterfaces, the total energy of the system, and the forceacting between two impenetrable interfaces.Now let us introduce the reduced monomers num-ber nsat = Nsat=�. At the saturation limit (23) we haveN(�; d) ! Nsat(d) and q ! 1=p2, and the expression(22) transforms intonsat � 2g� sn(g�y; 1=p2)dn(g�y; 1=p2)cn(g�y; 1=p2) ��2g�E(am(g�y; 1=p2); 1=p2) + g2�y; (27)where g�(y) is the numerical solution of the transcen-dental Eq.(26). The dependence (27) nsat = nsat(y) hasthe universal scaling form for di�erent values of the pa-rameters � and d. The numerical solution for nsat(y) ispresented in Fig. 1.For penetrable interfaces in [9], nsat(y) decreaseswith the scaling variable y tending to its minimum value�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 7 { 8 2011



480 I. V.Gerasimchuk, V. S.Gerasimchuk, J.U. Sommer

0 1 2 3 4 5
y

0

0.2

0.4

0.6

0.8

1.0

n
sat

Fig. 1. The dependence nsat(y) at the saturation thresholdfor some value y� and increases again for y ! 0. Incontrast to this case, for impenetrable interfaces the de-pendence nsat(y) monotonically decreases and vanishesfor y ! 0, because in this case (under consideration)monomers cannot penetrate to the tails outside the spacecon�ned by the interfaces.The distance d between two interfaces can not beof an arbitrary length. It is limited by the maximumlength of a chain, viz., by the total number of monomersmultiplied by the statistical segment length of the chain,dmax = (N � 1)a. The minimal distance dmin is de�nedby the parameter a.Eq. (12) can be alternatively derived from a varia-tional principle using the energy functional E [u] (perunit area) (see Ref. [4])E= +1Z�1(����@u@x ����2+�juj4��[�(x+d)+�(x�d)]juj2) dx:(28)Note that, like in [9], the eigenvalue � plays the roleof the chemical potential for monomers bound in the ad-sorbed state.Substituting the solution (18) into the integral (28),we �nd the exact expression for the total energy of thesystem:E = 4q02�33 sn(�d; q)dn(�d; q)cn3(�d; q) + 2(1� 2q2)�33 �� � sn(�d; q)dn(�d; q)cn(�d; q) �E [am(�d); q]��� 2�q02�2cn2(�d; q) + 2q02(13 � q2)�4d: (29)Again, we can introduce the scaling variables g� andy (25) and de�ne the appropriately reduced energy ofthe system "sat = Esat=�3. Then, we obtain in the satu-ration limit (� ! 0):

"sat � 2g3�3 sn(g�y; 1=p2)dn(g�y; 1=p2)cn3(g�y; 1=p2) �� g2�cn2(g�y; 1=p2) � g4�y6 : (30)Using the solution g�(y) given by Eq.(26), we obtaina single variate function "sat(y). The minimum valueof "sat, as it follows from (30), is equal to "minsat = �2.The universal dependence "sat = "sat(y) is presentedin Fig. 2. Thus, the energy of the saturated system is
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Fig. 2. The dependence "sat(y) at the saturation thresholda monotonously increasing function of the distance be-tween the interfaces.If we compare the dependencies "sat(y) for the sys-tem of two solid walls and for the system of two pen-etrable interfaces, we can conclude that over all therange of the scaling variable y we have "hard wallssat (y) << "penetr interfsat (y). The number of monomers localizedbetween the hard walls at the saturation limit is muchsmaller as compared to the case of two penetrable inter-faces.Also, we can calculate an important characteristicsof the system for practical measurements, viz., the forceper unit area acting between the interfaces. In the gen-eral case F = �dE(d; �)=dd, and at the saturation limitwe haveFsat = �dEsat(d)dd = 2�3(�0d+ �)3cn4(�d; 1p2 ) ++ 2�2 [�0 � � (�0d+ �)] � sn(�d; 1p2 ) dn(�d; 1p2 )cn3(�d; 1p2 ) ++ � ��2 (�0d+ �)� 18��0�9cn2(�d; 1p2 ) � �3 (14�0d+ 5�)18 : (31)The parameter �0 � d�=dd is found by di�erentiation ofEq. (24). �¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 7 { 8 2011



Adsorption of polymer chains at two impenetrable interfaces 481If we introduce the reduced force fsat = Fsat=�4 andthe new function g�0(y) = �0=�2, then we can rewriteEq.(31) in the following form:fsat = 2g3�(g�0y + g�)3cn4(g�y; 1p2 ) + 2g2� [g�0 (1� y)� g�]�� sn(g�y; 1p2 ) dn(g�y; 1p2 )cn3(g�y; 1p2 ) ++ g� �g2� (g�0y + g�)� 18g�0�9cn2(g�y; 1p2 ) � g3� (14g�0y + 5g�)18 ; (32)whereg�0(y) = g��(y)2g�cn3(g�y; 1p2 )� y�(y)� 2p2 ; (33)�(y)= �3g2�cn2(g�y; 1p2)+2� sn(g�y; 1p2)dn(g�y; 1p2);(34)and g�(y) is the solution of Eq. (26).For di�erent values of the parameter � we obtain theuniversal dependence fsat = fsat(y) presented in Fig. 3.In the limit y ! 0 we have g� � p2, g�0 � �2p2
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Fig. 3. The dependence fsat(y) at the saturation thresholdand the minimum value of fsat from Eq.(32) is equal tofminsat = �10.If we compare the forces acting between two hardwalls and between two penetrable interfaces, we can seethat both dependences tend to zero for large values of yand ��fhard wallssat (y)�� > ���fpenetr interfsat (y)��� over all the rangeof the variable y.

To summarize, we obtained the exact solution for theproblem of adsorption of a real polymer chain betweentwo impenetrable attracting interfaces within the mean-�eld approximation. We described adsorbed states atthe saturation limit. This can be realized for the adsorp-tion from highly diluted polymer solutions and stronglyattracting interfaces as discussed above.For the saturation limit, we derived an exact scalingsolution, where the only relevant control parameter isthe measure of the overlap between the interfaces givenby the scaling variable (the coupling parameter of theinterface-polymer system). We found the total numberof monomers adsorbed at the interfaces (hard walls),the total energy of the system, which turned out to bestrictly negative, and the forces acting between bothinterfaces due to the interface-polymer coupling. Theforces turned out to be attractive and monotonously ap-proaching zero with increasing the distance between theinterfaces. Also, we performed the comparison of ourresults with those obtained in [9] for the array of twopenetrable interfaces.1. J.-U. Sommer and M. Daoud, Europhys. Lett. 32, 407(1995).2. Jens-Uwe Sommer and Alexander Blumen, Phys. Rev.Lett. 79, 439 (1997).3. G.W. Slater and S.Y. Wu, Phys. Rev. Lett. 75, 164(1995).4. P.G. de Gennes, Scaling Concepts in Polymer Physics,Cornell University Press, Ithaca and London, 1979.5. P.-G. de Gennes, Adv. Colloid Interface Sci. 27, 189(1987).6. G. Rossi and P. Pincus, Macromolecules 22, 276 (1989).7. P.-G. de Gennes, Macromolecules 15, 492 (1982).8. G. J. Fleer, M. A. Cohen Stuart, J.M.H.M. Scheutjenset al., Polymers at Interfaces, Chapman and Hall, Lon-don, 1993.9. I. V. Gerasimchuk, J.-U. Sommer, and V. S. Gerasim-chuk, ZhETF 139, 587 (2011) [JETP 112, 511 (2011)].10. A.N. Semenov, J. Bonet-Avalos, A. Johner, andJ. F. Joanny, Macromolecules 29, 2179 (1996).11. M. Doi and S. Edwards, The Theory of Polymer Dy-namics, Clarendon Press, Oxford, 1986.12. P.G. de Gennes, Rep. Prog. Phys. 32, 187 (1969).13. P.G. de Gennes, J. Phys. (Paris) 31, 235 (1970).
6 �¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 7 { 8 2011


