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The special features of magneto-dipole photoionization of s-atomic states are analyzed and the possibilities
of experimental observation of this effect are discussed. It has been shown that despite the smallness of total
cross sections of magnetic processes as compared with electric-dipole ones, the experimental observation of
magnetic effects is possible, in principle, if photoelectrons are registered in the directions perpendicular to both
the polarization vector of photon and its momentum; i.e. in the directions where the differential cross section of
electric-dipole ionization of s-atomic states is close to zero. The possibilities of the derived general formulas for
the magneto-dipole cross sections are illustrated by numerical calculations for s-subshells of He and Be atoms.

The investigation of atomic photoeffect has started
more than eighty years ago (see, e.g. [1] and references
therein). All this period only its electric component was
considered, since it was clear that the magnetic con-
tribution is small and almost non-observable. We will
show here that the situation nowadays is different and
the magnetic photoeffect, being determined to large ex-
tent by electron correlations, is at some angles observ-
able and dominative.

The magnetic transitions are due to interacting of
the magnetic field of the electromagnetic wave with the
electron spin. Within the non-relativistic approach, the
electron behaves as a particle having along with the elec-
tric charge a magnetic moment pu = o /2c¢ as well. Here
¢ is the speed of light, o is the spin operator'). In the
one-electron approximation the Pauli equation for the
atomic electron in the presence of the vector-potential
A and scalar potential ® has the form [2]

oY(r,t)

Iat_

- ll <p_%A> +V(r)+<I>—2ic(cr-rotA) Y(r,t).
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(1)
Here r and p are the electron coordinate and momentum,
V (r) is the spherically symmetric self-consistent poten-
tial of the nuclei and other atomic electrons. Choosing
the calibration of the 4-vector-potential as divA = 0
and ® = 0, and neglecting the term ~ A? in Eq. (1), we
write the Hamiltonian of electron interaction with the
electromagnetic field as follows

ﬁint:_% [(A-p)+%(a-rotA) : (2)

1)Throughout the paper we use the atomic system of units
e=m=h=1.

The vector-potential of radiation propagating as a plane
wave with the wave vector k and frequency w can be
written in the form

A = Agecos(k - T — wt). (3)

Let us choose a coordinate system where the photon po-
larization vector e is directed along the Z-axis and the
photon wave vector k along the X-axis. In this coor-
dinate system the Hamiltonian of interaction Eq. (2) is
presented in the following form

] _ Ao i s —i(k-r—wt)
Hiy: = 5 { [(e -p) 2H(Cr _])] e

+ [(e -p) + i%n(a J)] ei("'r“’t)} . (4)
Here the unit vector j is directed along the Y -axis. The
firs term in this formula is responsible for the process of
photon adsorption and the second for spontaneous pho-
ton emission. The imaginary unit in Eq. (4) corresponds
to a phase shift between the electric and magnetic fields
of electromagnetic wave and it is evidence of the absence
of interference between the terms due to interacting with
the electron charge and magnetic moment [3].

Within accuracy up to the second order in photon
momentum K a part of the operator (4) responsible for
electric transitions accompanying photon absorption is
presented in the form

Ao

H ~i—
el 2C

A part of this operator corresponding to the magnetic

photoionization is

1+i(k-r) —%(K,-I')z (e-V)e ™t (5)

A . w . i
H oy ~ zﬁ(a -je it (6)

The terms in Eq. (5) result in the electric-dipole (E1)
and electric-quadrupole (E2) electron transitions. The
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operator Eq. (6) is responsible for the magneto-dipole
transitions (M1) accompanied with spin flip of the opti-
cal electron. This operator acts only on the spin parts
of the wave functions so the matrix element of the tran-
sition due to this operator is simply an overlap integral
between the wave functions of the initial and final states
of the optical electron. According to these formulas, the
amplitude of the magneto-dipole transitions is the same
order as the amplitude of the quadrupole transitions.
However, because of interference of the dipole (E1) and
quadrupole (E2) electric amplitudes, the probability of
the magnetic transitions proves to be 1/« less than that
of the E1-E2 electric transition (« is the fine structure
constant).

Because of absence of interference between the pho-
toelectron partial waves generated by the electric and
magnetic operators, the differential cross section of an
atom is a sum of the cross sections of the photoelectric
and photo-magnetic processes

dotot(w)  doe(w) N domag (w) 1)
dQy, dQdy aQ,
Here dQ)j, is the solid angle in which the electron wave
vector k = p is as a result of atomic photoionization.
Magneto-dipole photoionization in the s-state results
in the isotropic angular distribution of photoelectrons.
The differential cross section of this process is defined
by the formula

domag(w) _ Omag(w)
a, —  4r

where the total magnetic cross section is

(8)

Omag (W) = 2mnsawpMg.

(9)
Here ng; is the number of electrons in the s-atomic
state. The matrix element of the magneto- dipole s—
s-transition with spin flip of the optical electron has the
form

My = / Rl (r) Ry, (r)r2dr. (10)
The arrows at the radial parts of the photoelectron wave
functions designate the directions of electron spin in the
bound ns-state and continuum ks-one. This integral is
non-zero, if exchange between atomic electrons is taken
into account.

The asymptotic behavior of the continuum wave
function is defined as follows

Riy(r)rsoo = (kr) " Lsin(kr + &7). (11)

Here Jf(k) are the phase shifts of the wave functions.
The numerical calculation of the magnetic cross sec-
tion (9) for He atom was performed in the Hartree-Fock
approximation with the codes [4]. First, the wave func-
tion of the ortho-He ground state, in which the electrons
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with opposite spines are in the 1s*1s'-state was calcu-
lated. An optical electron in the initial state was de-
scribed by the function RIO (r). The continuum wave
function is an excited state of para-He. Therefore, the
next stage of calculation is that of the ground state
1s+2s* of para-He, in which both electrons have the
same spin. This ground state of para-He is used in cal-
culating the frozen core approximation continuum wave
function Rto (r). This approximation assumes that the
electron wave functions of the atomic core remain un-
changed during optical electron transition to the contin-
uum. The wave functions R}, (r) and Rto (r) are used for
calculation of the overlapping integral (10) and the cross
section (9). The calculations of the para-He wave func-
tion Rto (r) were performed also for the 1stnst ground
states of para-He where the principal quantum number
is n = 3—5. It was found that the results of magnetic
cross-section calculations are practically independent of
n, which evidences the correctness of the frozen core ap-
proach.

The calculation results for omag(w) are presented in
Fig.1. The magnetic cross section of 1s-photoionization
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monotonic decreases with the growth of photon energy.
At the process threshold the cross-section has the value
Omag(l1s) = 6.64 - 1072*cm? that is significantly less
than the electric cross-sections of atomic photoioniza-
tion. However the cross-sections of such an order are
quite accessible for experimental observation and study
(see, for example, [3,5]). The calculation results of the
cross sections for 1s- and 2s-subshells of Be atom are
derived similar to that for 1s-shell of He and are also
presented in this figure.

In spite of smallness of the magnetic cross section
as compared to the electric one, under some conditions
the magnetic-dipole transitions become a main channel
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of atomic photoionization. Unlike the isotropic angu-
lar distribution for magneto-dipole s—s-photoionization
(8), the differential cross section doe /dS2;has anisotropy
form. It is easy to show that within accuracy up to
the ~k? terms the cross section doe/dQy is defined
by a linear combination of the following spherical func-
tions: }flo(k), Y-gil(k), }f30(k) and Y3i2(k) [6] Here
Yim(k) = Y (9%, @r), where d; and ¢ are the polar
and azimuthal angles of the vector k in the above de-
scribed coordinate system. All these spherical functions
go to zero for ¥ = pp = w/2 [7]. Hence in experiment
registering photoelectron emission in the direction of the
Y -axis the electric cross section is doe/dQ = 0%, the
differential photoionization cross section (7) is equal to
the magneto-dipole s—s one

dogot T\ _ Omag(w)
sy, (“9’“_"”’“_5) T ar
Thus, the study of photoelectron emission at ¥ =
= ¢ = m/2 opens the possibility of the direct experi-
mental observation of magnetic photoeffect.
A possible scheme of such experiment is given in

Fig.2, where the detector d fixes the photoelectrons

(12)

VA

K X
dQ,
Y
Fig.2
ejecting along the Y-axis to a small solid angle
w/2+4¢€/2 w/24¢€/2
de = / sinﬁkﬁk / d(pk = 62. (13)
w/2—e/2 w/2—e/2

It is evident that the angular size of the detector should
be such that the photoelectron current due to electric
photoeffect to this detector be small as compared to the
magneto-dipole one. For this the following inequality
should be met

7r/2+e/2d w/2+e/2 y
Oel . Oma,

Py dd d EdQy. (14
/ a0 SIn Vg aV% / Yr < a0, (14)
w/2—e/2 w/2—e/2

2)The electric cross section along the axis Y is equal to zero for
all the orders in photon momentum. It is easy to see it using the
plane wave as continuum wave function.

Within accuracy up to the first order in photon mo-

mentum k the photoelectric cross section of the atomic

s-state photoionization has the form [6]

dael (w)
Ay,

_ ael(w) [

3 cos? ¥y +7s (w) cos® Iy, sin Iy, cos @]

(15)
Here 7;(w) ~ & is one of the nondipole parameters of
the photoelectron angular distribution. The terms of the
next order ~«? in the cross section (15) make a negligi-
bly small contribution to the integral (14). Substituting
(15) into (14), we obtain the following limitation for the
detector solid angle

a0, < 47mes(@) (16)

Oel(w)

Taking into account that the photoionization cross-
section of He atom at the threshold has the value
oe(l1s) ~ 8- 10" cm? [8], we obtain from (16) the
following rather rigid limitation for the detector angular
size: dQ0g < 3-1079 steradian.

It follows from (16) that the less is doe(w), the more
favorable is the possibility of experimental observation
of magnetic photo-transitions. It is this situation that is
realized in the processes of photodetachment of s-states
of negative ions (as for any atomic-like system formed
by the short-range forces, e.g. deuterons [9], for which
the electric dipole photodetachment cross section goes
to zero at the processes threshold. Magnetic photode-
tachment of negative ions we will consider elsewhere.

The experimental discovery and study of here-
described magnetic effects is per se a new avenue in
investigations of electromagnetic radiation interaction
with atomic systems, which sheds light on earlier un-
known delicate effects of quantum electrodynamics.
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