
Pis'ma v ZhETF, vol. 93, iss. 12, pp. 807 { 812 c 2011 June 25Triplet p-wave superconductivity in low-density extended Hubbardmodel with Coulomb repulsionM.Yu.Kagan+, D.V. Efremov�, M. S. Marienko4, V.V.Val'kov�+P.L.Kapitza Institute for Physical Problems RAS, 119334 Moscow, Russia�Max-Planck-Institut f�ur Festk�orperforschung, D-70569 Stuttgart, Germany4Department of Physics and Astronomy, Hofstra University, Hempstead, 11549 New York, USA�Kirenskii Institute of Physics, 660036 Krasnoyarsk, RussiaSubmitted 11 May 2011We analyze superconducting instabilities in 3D and 2D extended Hubbard model with Coulomb repulsionbetween electrons on neighboring sites in the limit of low electron density (nel ! 0) on simple cubic (square)lattice. We show that in a realistic strong-coupling case U � V �W (U and V are the onsite and the intersiteCoulomb repulsions, W the bandwidth) the main SC instability corresponds to the p-wave pairing and in theleading order is correctly described by the equations obtained earlier in the absence of the intersite Coulombinteraction V = 0.1. Introduction. One of the main challenges ofthe modern condensed matter physics is to identify theorigin of superconductivity in superuid 3He, heavyfermion compounds and Sr2RuO4, semimetals and su-perlatices. A lot of the experimental data as well astheoretical calculations suggest that the pairing resultsfrom the electron-electron interaction. In this scenario, aCoulomb repulsion is inverted into attraction due to thefermion background and retardation e�ects. This was�rst suggested by Kohn and Luttinger [1] for a 3D-sys-tem with point-like repulsion. The authors of Refs. [2{4]extended the analysis to 2D-systems and took into ac-count the e�ects of long range Coulomb interaction indense electron plasma. Recently, the question about therole of full Coulomb interaction for non-phonon mecha-nisms of superconductivity was raised in connection withthe HTSC-physics by Alexandrov and Kabanov [5], andit still demands very thorough investigations both in thejellium and lattice models.In the present paper we consider the simplest and themost repulsive (thus the most unfavorable for e�ectiveattraction and SC) lattice model with the strong on-siteHubbard repulsionU and the relatively strong additionalCoulomb repulsion V on the neighboring sites (Fig. 1).We show that in this model the p-wave superconductiv-ity exists in both the 3D- and 2D-case [2{4]. We assumethe following estimates: U � e2="aB for Hubbard U andV � e2="d for Coulomb V . Here aB � "=me2 is the Bohrradius, " the e�ective dielectric permittivity, d the inter-site distance. We assume that for " � 1: aB � 0:5�A,and d � 3�4�A.In the simple 3D cubic lattice the bandwidth isW = 12t where t is the hopping integral, and the
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~  /2d d xFig. 1. E�ective interaction in the extended Hubbard modelwith Coulomb interaction on neighboring siteselectron mass at low density (practically, empty lat-tice) m = 1=2td2. The uncorrelated electron spectrum"(p) = �2t(cospxd + cos pyd + cos pzd) approximatelyhas quadratic form "(p) = �W=2 + p2=2m. Similarly,the chemical potential measured from the bottom of theband reads � = �W=2 + "F, where "F = p2F=2m is theFermi energy, pF the Fermi momentum. If, as usual,we assume aB � d (which, rigorously speaking, is validat moderate values of " � 1), then comparing the esti-mates for U � e2="aB, V � e2="d, and W � 1=md2 inthe limit aB=d � 1 we come to the following hierarchyof parameters: U � V �W: (1)Note that some important SC-systems possibly includ-ing HTSC could have large values of " and thus be indi�cult intermediate regime.In this paper we construct the theory for the SC-in-stability in the parameter range (1) and at low electron�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 11 { 12 2011 807



808 M.Yu.Kagan, D. _V. Efremov, M. S.Marienko, V.V.Val'kovdensity nel ! 0 (or subsequent gas parameter pFd� 1),neglecting an important question of the microscopicphase separation of Mott{Hubbard type [6, 7] with FM-polarons inside the AFM-matrix, and that of Verweytype [8, 9] with metallic polarons inside the charge-ordered matrix. These instabilities towards nanoscalephase separation arise in the model under condition (1)close to nel ! 1 for the Mott{Hubbard and nel ! 1=2for the Verwey type of phase separation.In the following we show that the leading SC-instabil-ity at nel ! 0 corresponds to the triplet p-wave pairingand in the leading order of the gas parameter [10] pFdis described by the expressions obtained in Refs. [2{4]for the low density Hubbard model in the absence ofCoulomb interaction (at V = 0). We review the 2D-case and present analogous results for the p-wave pair-ing in the strong coupling case [11, 12] which is also inaccordance with the low-density Hubbard model in theabsence of V (at V = 0).2. The model.We consider the HamiltonianĤ 0 = Ĥ � �N̂ = �t X<ij>� cyi�cj� + UXi ni"ni# ++ V2 X<ij>ninj � �Xi� ni� ; (2)where ni� = cyi�ci� is the electron density on site iwith spin projection �. After Fourier transformation,the Hamiltonian reads:Ĥ 0=Xp� ["(p)��]cyp�cp�+U Xpp0q cyp"cyp0+q#cp+q#cp0"++ Xpp0q��0 V (p;p0)cyp�cyp0+q�0cp+q�0cp0� ; (3)where V (p;p0) == V [cos(px�p0x)d+cos(py�p0y)d+cos(pz�p0z)d]: (4)In analogy with Ref. [13] it is useful to expand the ef-fective interaction Ue� = U + 2V (p;p0) into the sum ofthe s-wave and p-wave partial harmonics.At the low density pd � 1 the expansion up toquadratic terms gives e�ective interactions for s-waveand p-wave harmonics correspondingly:Use� = U + 6V + o(p2d2); and Upe� = 2V pp0d2: (5)In the strong-coupling case U � V � W it is conve-nient to renormalize Use� and Upe� in terms of vacuumKanamori T -matrices Ts and Tp [14]. To do that we

solve the Bethe-Salpeter equation in vacuum [15]. Thisyields [4] in the low-energy sector:Ts = (U + 6V )d31 + (U + 6V )d3 R d3p(2�)3 12"p � (U + 6V )d3(1 + �s) ; (6)where �s � (U + 6V )=8�t > 0 is the Born parameter forthe s-wave channel, and we neglect the antibound statewhich corresponds to the pole of the T -matrix at highenergies E � U [6, 16].We can introduce the s-wave scattering lengthas = mTs4� = Ts8�td2 � �sd(1 + �s) ; (7)and in the strong-coupling limit �s � 1, evidently,as � d (see Ref. [4]).Correspondingly, the 3D-gas parameter of Galitskii[10]: �s = 2aspF� � 2pFd� : (8)Note that the same result for the s-wave scattering lengthis valid in the strong-coupling low-density limit of theHubbard model without Coulomb interaction V = 0.Similarly, for the T -matrix in the p-wave channelTp = 2Appp0d2 (9)we getAp = V d31 + V d3 R d3p(2�)3 p2d23 12"p = V d3(1 + �p) ; (10)where �p = � VW > 0 (11)is the dimensionless Born parameter for the p-wave chan-nel and � � 1 is a numerical coe�cient.Introducing the p-wave scattering lengthap = Ap8�td2 = V d8�t(1 + �p) (12)We obtain in the strong coupling case �p � 1ap � d: (13)Thus mTp4� = 2appp0d2 � d3pp0 � d3pp0 cos �; (14)where � = dpp0, and thus the dimensionless p-wave gasparameter reads:�p � pFd3p2F � (pFd)3: (15)�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 11 { 12 2011



Triplet p-wave superconductivity in low-density extended Hubbard model with Coulomb repulsion 809Note that the estimate (15) is natural for the p-wave har-monics of the scattering amplitude for slow (pFd < 1)particles in vacuum [15].3. Bethe-Salpeter integral equation for Tc. Ac-cording to Landau{Thouless criterion for SC [17],�l = ~�l1 + ~�l ln� 2eC"F�Tc � ; (16)where C � 0:58 is the Euler constant, � the total vertexfor the Cooper channel, ~� the irreducible bare vertex,and l the orbital moment of the Cooper pair.The critical temperature Tc is given by the pole of(16). If ~� < 0 for several values of l, then the actualsymmetry of the superconducting state corresponds tothe highest Tc. According to Kohn and Luttinger [1], inthe absence of the Coulomb interaction (i.e. of �p (15))~�l6=0 is given by the sum of four irreducible diagrams(see Fig. 2) which are of the second order of the s-wave
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Fig. 2. Irreducible diagrams in the second order of the s-wave gas parameter �s which are nonzero only in the pres-ence of fermion background (at "F 6= 0)gas parameter �s. At the same time, for l = 1 due tothe presence of Coulomb repulsion V :~�l=1 = �2s�dl=1 + �p; (17)where �d = �(p + k) is the exchange diagram (seeFig. 2d.), �p is the bare vertex due to the p-wave vacuumcontribution of the intersite Coulomb interaction V .As shown in Ref. [1] for contact interaction �s the�rst three diagrams in the Fig. 2 exactly cancel eachother, and the resulting ~�l=1 is given by the fourth, ex-change diagram (see (17)).An exact evaluation of simple integrals shows [2{4]that for the exchange diagram �2s�dl=1 = ��2s=13 < 0which corresponds to the attraction and cannot be over-compensated by the repulsive bare vertex contribution

�p � �3s. This contribution only changes the next termin the expansion of ~�l=1 in terms of gas parameter and,in fact, is the corrections to main exponent. To be spe-ci�c (see Ref. [12, 18] and Fig. 3):~�l=1 = ��2s13 ���3s3 � �p�+ o(�4s): (18)Let us repeat again that the result (18) with the barevertex �p � �3s � (pFd)3 is to some extent evident be-
(a) (b) (ñ)

Fig. 3. Irreducible diagrams in the third order of gas para-meter for the Cooper channelcause according to quantum mechanics [15] for slow par-ticles in vacuum the p-wave harmonic of the scatteringamplitude is of the order (apF)2l+1 � (apF)3 at l = 1and p � pF. Thus the repulsive term in our case doesnot overcompensate the Kohn{Luttinger attractive con-tribution which arises only in fermion substance (when"F 6= 0) and is proportional to (apF)2. The only pe-culiarity of the lattice is that a � d at the large Hub-bard U �W and at low density of electrons, and hence�2s � (pFd)2 � 1.Thus even at the most repulsive (and thus unfavor-able for e�ective attraction and SC) hierarchy of para-meters U � V �W the presence of the Coulomb repul-sion V does not change the main exponent for the p-wavecritical temperature which reads Tc1 � "F exp ��13=�2s�as in [2{4].Note that if we change the hierarchy of parametersand make Coulomb repulsion weakerW � U � V , thenin the Born case:�p�mV d24� p3Fd3�mV d24� �3s� VW �3s � �2s �U + 6VW �2 ;(19)for pF ! 0 and still the overcompensation of the Kohn{Luttinger attraction by the bare repulsion due to theintersite Coulomb interaction V is impossible. Thus,in the principal approximation in the gas parameter werestore the results on the possibility of the p-wave su-perconductivity obtained earlier in the absence of theintersite repulsion[2{4].4. 2D extended Hubbard model. In the 2Dextended Hubbard model with attractive interaction(�V < 0) on neighboring sites the vacuum T -matrices8 �¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 11 { 12 2011



810 M.Yu.Kagan, D. _V. Efremov, M. S.Marienko, V.V.Val'kovfor the s-wave and p-wave channels were obtained in theRefs. [13, 19]. After the substitution�V ! V they yieldfor the s-wave channel Use� = U + 4V in the repulsivecase U � V �W :mTs( ~E)4� � (U + 4V ) �md2=4��1 + (U + 4V ) (md2=4�) ln�W=j~Ej� ;(20)where  � 1 is the numerical coe�cient. Again, weassume that we are in the low energy sector when onecan neglect the second pole of the Ts which correspondsto the antibound state E � U [6, 16]. In the Eq. (20)W = 8t for the 2D square lattice, and the energy~E = E +W is measured from the bottom of the band.If (U + 4V )=W � 1, thenmTs( ~E)4� � 1ln�W=j~Ej� : (21)In the Cooper problem j~Ej = 2"F and with the loga-rithmic accuracy we restore the 2D dimensionless gasparameter of Bloom [20]:fs � 1ln (1=nd2) ; (22)where n = p2F =2� is the electron density in 2D.Analogously, in the p-wave channel Upe� = 2V pp0d2,and the p-wave T -matrix reads:mTp4� = 2mAp4� pp0d2 = 2mAp4� pp0d2 cos�; (23)where � =dpp0, andmAp4� = mV d2(1 + V=Vcp)8� : (24)Correspondingly [19],Vcp = 11:2t � 1:4W: (25)At V � Vcp, the dimensionless p-wave scattering lengthin 2D reads mAp4� = md2Vcp8� ; (26)and, accordingly, the dimensionless p-wave gas parame-ter is fp � 2mVcpd28� p2Fd2 � p2Fd2: (27)Thus fp � p2Fd2 again in agreement with generalquantum-mechanical results [15] for slow (pFd < 1) par-ticles in vacuum in the 2D-case.

5. The Cooper problem in 2D at low elec-tron density and in the presence of intersiteCoulomb repulsion. If we restrict ourselves to a verylow electron density neld2 � 1 and quadratic spectrum"(p) � � = (p2 � p2F )=2m, then in the second order ofthe s-wave gas parameter the irreducible vertex for theCooper channel reads:~� = f2s�(p+ k): (28)However, the speci�c form of the polarization operatoron quadratic spectrum in 2D [21] for q = p+ k�(q) = 1�Req1� 4p2F=q2 (29)makes the large Kohn's anomaly ine�ective for the SC-problem [4, 11]. Indeed, in the SC-problem q � 2pF,Rep1� 4p2F =q2 = 0, and thus �(q) = 1. Hence, thepolarization operator does not depend on q, and corre-spondingly it does not contain harmonics with l 6= 0(or more precisely, with the magnetic quantum num-ber m 6= 0). Thus �m=1 = 0, and SC arises onlyin the third order of fs for quadratic spectrum (or inthe second order of fs if we take into account correc-tions �p4x + p4y� d2=m which di�er the exact spectrumon the square lattice "(p) = �2t(cospxd + cos pyd) �� �W=2+p2=m��p4x + p4y� d2=24m from the quadraticone "(p) = �W=2 + p2=m, see Ref. [22]). At very lowdensity nel ! 0 the third order terms in the quadraticspectrum from three irreducible diagrams in the Fig. 3dominate over the quartic corrections to the spectrum.Chubukov [11] found the leading contribution to~�m=1 from the �rst skeleton diagram in which theCooper loop is inserted into the polarization loop (itis important that this diagram is still irreducible withrespect to Cooper channel). Moreover, the character ofthe large 2D Kohn's anomaly in this diagram changesand it becomes Rep2pF � q. Thus, the Kohn's anomalybecomes e�ective for SC in the third order. As a resulthe has obtained ~�m=1 = �4:1f3s in the Ref. [11]. Inthe Ref. [12], all three irreducible skeleton diagrams onFig. 3 were calculated numerically on equal ground. Asa result, the exact vertex~�m=1 = �6:1f3s (30)is even a little bit more attractive. The details of thiscalculation will be published in a separate article.Thus, the total ~�m=1 at nel ! 0 reads:~�m=1 = �6:1f3s + �p2Fd2 + o(f4s ); (31)where � � 1 is a numerical coe�cient.�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 11 { 12 2011



Triplet p-wave superconductivity in low-density extended Hubbard model with Coulomb repulsion 811Of course, keeping in mind that fs � 1= ln �1=nd2� �� 1= ln �1=p2Fd2�, we see that f3s � pF2d2 at pFd � 1.Thus, ~�m=1 � �6:1f3s just like in the case V = 0.We can see again that in the strong-coupling limitU � V � W of the extended Hubbard model on thesquare lattice and at low electron density pFd � 1 aninclusion of Coulomb repulsion does not change the mainexponent for the p-wave critical temperatureTc1 � "F exp�� 16:1f3s � : (32)Thus in the principal order in the gas parameter weagain restore the results on the p-wave superconductiv-ity obtained earlier [11, 12] in the absence of the intersiteCoulomb repulsion.6. Discussions: the case of larger densities. Ifwe increase the density in the 2D-case, we should re-member that at U � V �W the homogeneous metallicstate stretches only up to the density nel = 1=2 � �c,where in 2D �c � (W=V )1=2 (see Ref. [9]). At nel >> 1=2 � �c the system undergoes a phase transitioninto phase-separated state with metallic clusters insidecharge-ordered checkerboard matrix (see Fig. 4).Fig. 4. Phase separation at the density nel � 1=2 intometallic droplets in charge-ordered matrixNote that at nel = 1=2 (quarter-�lled band) we haveVerwey localization (charge ordering) due to the con-dition V � W . Thus, we cannot extend our calcu-lations for Tc in homogeneous case to densities largerthan nel = 1=2. However, it is interesting to constructthe SC phase diagram of the extended Hubbard modelwith the Coulomb repulsion on neighboring sites at theintermediate density nel � 1=2, and to �nd the regionsthat correspond to the p-wave, dxy, and dx2�y2 pairings[4, 22, 23].Another interesting question would be to add tothe model an in�nite set of Coulomb repulsion termswith the amplitude decreasing with the distance be-tween the sites: V2nini+2 on next-to-nearest sites withV2 < V , V3nini+3 on next-to-next-to-nearest sites withV3 < V2 < V etc. and to build a bridge betweenthe extended Hubbard model and the jellium model forscreened Coulomb interaction considered in Ref. [5].We think, however, that at least at very low elec-tron density nel ! 0 our results on the p-wave criticaltemperature will be stable in the main order of the gasparameter pFd� 1 in 3D and 1= ln(1=p2Fd2) in 2D.

7. Conclusion. We considered the extended Hub-bard model with Coulomb repulsion on the neighbor-ing sites in the most repulsive (and thus the most unfa-vorable for e�ective attraction and SC) strong-couplingcase U � V � W . In the limit of small electron den-sity pFd � 1 we found that the p-wave contributionfrom the intersite Coulomb repulsion V to the irreduciblebare vertex ~�l=1 in the p-wave channel is proportionalto (pFd)3 in 3D and to (pFd)2 in 2D in agreement withgeneral quantum-mechanical results for slow particles invacuum.Thus both in 3D and 2D these repulsive terms can-not overcompensate attractive contributions which areproportional to (pFd)2 in 3D and to 1= ln3(1=p2Fd2) in2D. Note that the attractive contributions appear onlyin the presence of fermion background ("F 6= 0). Thusthe results of Refs. [4, 11, 12, 18] on the p-wave SC ofKohn{Luttinger type [5] both in 3D and 2D repulsive-UHubbard model at low electron density and strong cou-pling U � W are robust against the addition of evenstrong Coulomb repulsion on neighboring sites V �Win the extended lattice models. Hence we can see thatthe p-wave superconductivity exists in purely repulsivemodels without electron-phonon interaction.Note that we can strongly increase the p-wave criticaltemperature already at low density in a spin-polarizedcase [24] or in the two-band situation [25] and thus reachthe realistic values of Tc (of the order of 1{5K especiallyin the 2D or in layered systems [26]). The p-wave pair-ing is realized or can be expected in superuid 3He andultracold Fermi-gasses, heavy fermion compounds andSr2RuO4, semimetals and superlatices, layered dichalco-genides and organic superconductors [27{30].We acknowledge useful discussions with A.V. Chu-bukov, A.S.Alexandrov, I.A. Fomin, K.I. Kugel andV.V.Kabanov. This work was supported by RFBRgrants #11-02-00708 and #11-02-00741, M.S.M ac-knowledges the support by the Department of Energyunder Award #DE-FG02-08ER64623 (Hofstra Univer-sity Center for Condensed Matter).1. W. Kohn and J.M. Luttinger, Phys. Rev. Lett 15, 524(1965).2. D. Fay and A. Layzer, Phys. Rev. Lett. 20, 187 (1968).3. M.Yu. Kagan and A.V. Chubukov, JETP Lett. 47, 525(1988); A.V. Chubukov and M.Yu. Kagan, Jour. ofPhys: Condens. Mat. 1, 3135 (1989).4. M.A. Baranov, A.V. Chubukov, and M.Yu. Kagan, Int.J. Mod. Phys. B 6, 2471 (1992).5. A. S. Alexandrov and V.V. Kabanov, Phys. Rev. Lett.106, 136403 (2011).6. J. Hubbard, Proc. Roy. Soc. London A 276, 238 (1963).�¨±¼¬  ¢ ���� ²®¬ 93 ¢»¯. 11 { 12 2011 8�
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