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 2011 July 10Topological crossovers near a quantum critical pointV.A.Khodel+�1), J.W.Clark�, M.V. Zverev+y+Russian Research Centre Kurchatov Institute, 123182 Moscow,Russia�McDonnell Center for the Space Science and Department of Physics, Washington University, St.Louis, MO 63130, USAyMoscow Institute of Physics and Technology, 123098 Moscow, RussiaSubmitted 19 May 2011We study the temperature evolution of the single-particle spectrum �(p) and quasiparticle momentum dis-tribution n(p) of homogeneous strongly correlated Fermi systems beyond a point where the necessary conditionfor stability of the Landau state is violated, and the Fermi surface becomes multi-connected by virtue of a topo-logical crossover. Attention is focused on the di�erent non-Fermi-liquid temperature regimes experienced bya phase exhibiting a single additional hole pocket compared with the conventional Landau state. A criticalexperiment is proposed to elucidate the origin of NFL behavior in dense �lms of liquid 3He.The study of non-Fermi-liquid (NFL) behavior ofstrongly correlated Fermi systems in the regime of aquantum critical point (QCP) is currently one of themost active and challenging areas of condensed matterphysics [1, 2]. As a rule, such behavior is attributed tosecond-order phase transitions, and the QCP is identi-�ed with the end point of a corresponding line of transi-tion temperatures, denoted by TN(H) in the prototypein which an external magnetic �eld H is the control pa-rameter. In this case, NFL behavior is triggered by crit-ical antiferro- or ferromagnetic 
uctuations, which leadto violation of respective Pomeranchuk stability condi-tions (PSC). Ensuing NFL phenomena are presumablyexplained either within the Hertz{Millis theory [3, 4]or, in heavy-fermion metals, within a Kondo breakdownmodel [1, 2, 5, 6].However, the widely promulgated 
uctuation sce-nario is inconsistent with experimental data on a num-ber of strongly correlated Fermi systems exhibiting NFLbehavior:(i) In dense 3He �lms where the emergent NFL be-havior has been documented, experiment [7{10] has notidenti�ed any related second-order phase transition.(ii) In several heavy-fermion metals [11, 12], concur-rent divergence of the Sommerfeld ratio 
(T ) = C(T )=Tand the magnetic susceptibility �(T ) is observed at apoint that is separated by an intervening NFL-phasefrom termination points of any second-order phase tran-sitions.(iii) In many instances of well-pronounced NFL be-havior, the order parameters required to specify asso-ciated second-order phase transitions are still elusive,casting further doubt on the 
uctuation scenarios.1)e-mail: vak@wuphys.wustl.edu

(iv) In external magnetic �elds, thermodynamicproperties demonstrate scaling behavior governed specif-ically by the ratio �fH=T where �f is the magnetic mo-ment of constituent fermions.These NFL-phenomena can be understood when onerecognizes that standard FL-theory possesses its ownquantum critical point, in the vicinity of which it fails.At this point, the necessary stability condition (NSC) forthe T = 0 Landau state is violated [13{16], as opposedto violation of some PSC at a conventional QCP.The NSC-states that an arbitrary admissible vari-ation �n(p) from the FL quasiparticle momentum dis-tribution nF(p) = �(pF � p), while conserving particlenumber, must produce a positive change of the ground-state energy E0, i.e.,�E0 = Z �(p;nF(p))�n(p)d� > 0: (1)Here, �(p;nF) denotes the spectrum of single-particle ex-citations measured from the chemical potential �(T = 0)and evaluated for the initial Landau state speci�ed by thequasiparticle occupancy nF(p). The reduction in energydue to breakdown of the NSC, which involves contribu-tions linear in �n, is clearly larger than that due to vio-lation of any PSC, which involves bilinear combinationsof �n. We must conclude that any associated 
uctuationscenario is irrelevant to the di�erent type of QCP asso-ciated with violation of the NSC, which we shall call aFermi-liquid QCP.Violation of the NSC (1) is unambiguously linked toa change of the number of roots of equation�(p; nF) = 0: (2)In standard Fermi liquids, this equation has a single rootat the Fermi momentum pF, and in that case the signs of�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 1 { 2 2011 73



74 V.A.Khodel, J.W.Clark, M.V. Zverev�(p) and �n(p) coincide, ensuring satisfaction of the NSC(1). However, consideration of the full Lifshitz phase di-agram anticipates the emergence of additional roots ofEq. (2). For example, such roots appear at a criticaldensity �� where the function �(p; ��) attains either amaximum, with a bifurcation point pb < pF, or a min-imum, with pb > pF, so that �(p ! pb; ��) / (p � pb)2,(see the upper two panels of Fig. 1). Thus, vanishing
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p pb F=Fig. 1. Three scenarios of emergent bifurcation in Eq. (2):pb < pF (top left panel), pb > pF (top right panel), pb = pF(bottom panel)of �(pb; ��) is always accompanied by vanishing of thegroup velocity v(pb; ��) = (@�(p; ��)=@p)pb . Beyond thecritical density ��, the NSC-fails to hold, since �(p; nF; �)and �n(p) have opposite signs close to pb.As indicated in the lower panel of Fig. 1, the condi-tion (1) is also violated at a critical density �1 wherethe e�ective massM�(�) diverges. In this case, standardmanipulations based on the Landau relation connectingthe single-particle spectrum and the quasiparticle mo-mentum distribution (see Eq. (9) below), yieldvF(�)v0F � MM�(�) = 1� 13F 01 (�); (3)where v0F = pF=M and F 01 (�) = f1(pF; pF; �)pFM=�2is the dimensionless �rst harmonic of the Landau inter-action function, normalized with the density of statesN0 = pFM=�2 of the ideal Fermi gas. Evidently, F 01 (�)is a smooth function of the density �, and F 01 (�) = 3at � = �1. Then beyond the critical point, one hasF1(�) > 3, and the Fermi velocity vF(�) becomes neg-ative. This behavior con
icts with the 
uctuation sce-nario for the QCP, in which such a sign change is im-possible.To summarize, we infer that at any point where theNSC is violated, the density of states, given byN(T ) = 1T Z n(�)[1� n(�)]dpd� d�; (4)

diverges at T ! 0 due to vanishing of the group velocityd�(p)=dp. One has [17, 15]N(T ! 0; �1) / T�2=3; N(T ! 0; ��) / T�1=2: (5)The di�erence in critical indexes is associated with thefact that dp=d� / ��2=3 at the critical density �1,whereas dp=d� / j�j�1=2 at the critical density ��.Signi�cantly, the Sommerfeld{Wilson ratio RSW =�(T )=
(T ) cannot diverge at these points. Indeed, thedensity of states N(T ) cancels out in the ratio RSW,while the Stoner factor entering �(T ) maintains a �nitevalue, since, as we have seen, the PSC and NSC cannotfail at the same point. This conclusion is in agreementwith experimental data [7, 18, 19] on dense �lms of liq-uid 3He, the two-dimensional electron gas of MOSFETs,and the majority of heavy-fermion metals.Since no symmetry is violated at a Fermi liquid QCP,and hence no hidden order parameters are involved, thetransition ensuing from the violation of the NSC (1) istopological in character [20, 21]. Beyond the bifurcationpoint, Eq. (2) usually has two additional roots p1 and p2situated near each other (however, cf. Refs. [22{24]). Itis for variations �n(p) involving momenta p1 < p < p2,at which �n(p) and �(p) have opposite signs, that theNSC (1) breaks down.The analysis of topological rearrangements triggeredby the interaction between quasiparticles began twentyyears ago [22] with important subsequent developmentsreported in Refs. [17, 23{32]. In this article, we addressthe Fermi-liquid QCP in homogeneous matter and focuson the case where the new roots p1 and p2 emerge nearthe Fermi momentum pF. The physics of this phenom-enon is captured if we keep the three �rst terms,�(x) = pFx�vF + v12 x+ v26 x2� ;v(x) = vF + v1x+ v22 x2; (6)in the Taylor expansions of the spectrum �(x) and itsgroup velocity v(x), where x = (p � pF)=pF. To someextent, this approach is reminiscent of that employed byLandau in his theory of second-order phase transitions.In an ideal Fermi gas, vF = v1 = v0F = (2M�0F)1=2. Thecase v1 = 0, v2 > 0 was considered in Ref. [17]. Here weassume that v1 > 0, v2 > 0, and v1=v2 � 1, the situationaddressed in the numerical calculations of Ref. [15].To �nd the bifurcation momentum pb = pF(1 + xb)one must solve the set of equations �(p) = 0 andv(p) = 0, i.e. vF + v12 xb + v26 x2b = 0;vF + v1xb + v22 x2b = 0: (7)�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 1 { 2 2011



Topological crossovers near a quantum critical point 75This system has the solution xb = �3v1=2v2 providedthe critical condition 8v2vF(�)3v21 = 1 (8)is met. Thus in the case v1 6= 0, the critical Fermi ve-locity vF is still positive, and therefore the Landau statebecomes unstable before the system reaches the point atwhich the e�ective mass diverges { as was �rst discov-ered and discussed in Refs. [25].The prerequisite xb � 1 for applicability of theexpansion (6) is satis�ed provided v1=v2 � 1, im-plying that the critical Fermi velocity is small: vF == 3v21=8v2 � v0F. Given this situation, upon accountingfor the dependence of vF on the temperature T and con-trol parameters such as the external magnetic �eld Hthat do not change the form of Eq. (8), one can estab-lish a critical line T = T�(H) separating phases withdi�erent topological structure.Evaluation of relevant T - and H-dependent correc-tions to the Fermi velocity vF is based on the Landauequation [33, 34] for the single-particle spectrum �(p),which in 3D has the form@�(p)@p = pM + 13 Z f1(p; p1) @n(p1)@p1 d�1; (9)with d� = p2dp=�2. This relation provides a nonlin-ear integral equation for self-consistent determination of�(p; T;H) and the momentum distributionn(p; T;H) = h1 + e�(p;T;H)=T i�1 ; (10)with the Landau interaction function f(p;p1) (hence its�rst harmonic f1) treated as phenomenological input.Our goal is to evaluate the T - and H-dependenceof the key quantity vF(�; T;H). In the simplest caseH = 0, the overwhelming T -dependent contributions tovF come from integration over the vicinity of the bifur-cation momentum pb. Evaluation is performed along thesame lines as in Ref. [17], i.e., by expanding the interac-tion function in a Taylor series, although here we haveto retain a correction to the FL formula (3) linear inp� pb. As a result, we arrive atvF(T ! T�)� vF(�) / Z (s� pb)@n(s; T )@s ds; (11)where vF(�) is given by Eq. (3).The integral IT on the right side of Eq. (11) is evalu-ated with the aid of relations �(p! pb) / (p� pb)2 andd�(p ! pb)=dp / p�(p) stemming from Eq. (6). Uponstandard changes of integration variables p ! � ! Tz,we �ndIT / T 1=2 Z z1=2n(z) [1� n(z)] dz /qT=�0F (12)

at T ! T�. Together with Eq. (8), this result leads to atiny value of the critical temperatureT� / �0F� v21v2v0F�2D2; (13)where D = 1� 8v2v0F3v21 �1� 13F 01 (�)� � 0 (14)is a criticality parameter. Temperature T� vanishes atthe point where D = 0.Consider now the imposition of a magnetic �eld Hon the system. The impact of the �eld becomes well pro-nounced when �fH > T , and there emerge two subsys-tems having spin projections �1=2, implying in turn adecompositionN(T ) = N+(T )+N�(T ) of the density ofstates. The corresponding formulas are cumbersome andwill be analyzed elsewhere. Here we focus on the caseT = 0 and estimate an upper tuning magnetic �eld H�such that a bifurcation emerges in the spectrum �+(p),while the down-spin spectrum ��(p) = �+(p) � 2�fHadmits merely the conventional root p�F . As before, aleading correction IH to vF comes from integration overthe vicinity of the momentum pb, with the subsystemwhose spectrum goes to �+(p) / (p�p+b )2 = Tz+�fH�at H ! H� making the dominant contribution, to yieldIH / Z (Tz + �fH�)1=2 n(z) [1� n(z)] dz //q�fH�=�0F (15)and �fH� / �0F� v21v2v0F�2D2: (16)Comparing Eqs. (13) and (16) we see that �fH� � T�.This result is inherent to a scenario in which single-particle degrees of freedom play the dominant role andis consistent with available experimental data on heavy-fermion metals [19, 35].Let us now brie
y analyze the situation at T = H == 0 on the ordered side of the topological rearrangementassuming, as before, the criticality parameter D to bepositive. In the case v1 > 0, addressed �rst in Refs. [25]and later in Ref. [15], the bifurcation momentum pb re-sides inside the Fermi volume. The rearranged T = 0quasiparticle momentum distribution n(p) is given byn(p) = 1 for p < p1 and p2 < p < pF, and zero other-wise, with pF shifted outward to conserve quasiparticlenumber. Thus, the Fermi surface gains an additionalhole pocket. In the 1960's, such a small hole pocket was�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 1 { 2 2011



76 V.A.Khodel, J.W.Clark, M.V. Zverevcalled a Lifshitz bubble (LB) in Landau-school folklore.In this case, two additional roots of Eq. (2) appear, withx1;2 = �3v12v2  1�s1� 8v2vF(�; p1; p2)3v21 ! : (17)We note that vF(�; p1; p2) di�ers from the parametervF(�) introduced previously, since it is evaluated for thephase in which the Fermi surface has three sheets. Ac-counting for the displacement of pF due to emergence ofthe LB, one obtains vF(�; p1; p2) � vF(�) / (p1 � p2)2,leading to p2 � p1 / v1v2pD: (18)As a result, we �ndvLB / v21v2pD < vF (19)for the LB Fermi velocity vLB = v(x1) from the sec-ond of Eqs. (6), thereby demonstrating that the LB-contribution to the density of states N(0) prevails.At temperatures beyond T > T�, the LB-contribution to thermodynamic properties disappears.Were this to occur instantaneously, the speci�c heatC(T ) would undergo a jump, as if one were dealingwith a second-order phase transition. As a matter offact, the rearrangement occurs rapidly but not mo-mentarily. Thus one deals with a topological crossover(TC), and Eqs. (7) serve to establish a TC-line T�(H)that resembles a line TN(H) of second-order phasetransitions.The TC-width is found from the condition T< << T� < T>, with the boundaries T< and T> being de-termined by the relations�(pb; T<) = T�; �(pb; T>) = �T�: (20)Since v(p; T ) ' v�(p)pT=�0F in the LB-region near T�,the similar formula �(p; T ) = [��(p) � ��(pF )]pT is ob-tained for the spectrum �(p; T ) after a simple momentumintegration. Straightforward manipulations employingthe de�nition �(pb; T�) = 0 then lead toT> � T�T� ' T� � T<T� /qT�=�0F: (21)Accordingly, the reduced temperature width of the crit-ical region turns out to be small, implying that the TCdoes indeed imitate a second-order phase transition.A conventional FL regime having T -independentquantities �(0) / 
(0) / N(0) / 1=vLB(0) '' 1=[vF(0)pD] is seen to persist until T reaches T< <

T�, where the LB-occupation numbers begin to experi-ence substantial change as the temperature continues toincrease. Both the density of states N(T ) and the spinsusceptibility �(T ) attain maximum values at T = T�,where �(T�) / 1=v(xb; T�) / 1=pT�. At higher tem-peratures, the LB-contribution to �(T ) begins to fall,�nally dying out and leaving �(T ) / 1=vF(0). Analo-gous results are found for the Sommerfeld ratio, givenby 
(T ) = Z �(p)T @n(p)@T d�; (22)except that 
 reached its maximum at a di�erent tem-perature, due to the marked dependence of the spectrum�(p; T ) on T . The foregoing analysis therefore leads tothe conclusion that in the QCP-region, both the mag-netic susceptibility �(T ) and the Sommerfeld ratio 
(T )exhibit asymmetric peaks, located at di�erent temper-atures ' T�. Such behavior, observed in many heavy-fermion metals situated in a QCP region [19, 35, 36],remains unexplained within any conventional scenariofor the QCP.Further temperature evolution of the spectrum�(p; T ) is associated with another essential rearrange-ment [15] of the momentum distribution n(p; T ) thatoccurs in the region of a critical temperature T�. Thedistribution n(p; T ) becomes a smooth function ofmomentum n(p; T ) ' n�(p); pi < p < pf ; (23)in an interval adjacent to the Fermi surface and is other-wise unity for p < pi and zero for p > pf . In this domain,n(p; T ) is nearly independent of T , while the dispersionof the single-particle spectrum �(p; T ) becomes propor-tional to T so as to satisfy Eq. (10).Both these features are inherent to the phenomenonof fermion condensation, a topological phase transitiondiscovered twenty years ago [13, 22{24,37, 38], in whicha 
at band pinned to the Fermi surface (the so-calledfermion condensate (FC)) is formed. This phenomenon,alternatively viewed as a swelling of the Fermi surface,was recently rediscovered by Lee [39] while investigatingthe �nite-charge-density sector of conformal �eld the-ory (CFT) within the AdS/CFT gravity/gauge duality.The phenomenon of fermion condensation (
at band)may also arise in topological media for purely topologi-cal reasons, (see Refs. [40, 41]).Unfortunately, important details of this rearrange-ment cannot be established analytically. To clarify therelationship between properties of the phase having thesingle LB at T = 0 and those of a system possessinga FC at T = 0, we must resort to numerical treatment�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 1 { 2 2011



Topological crossovers near a quantum critical point 77of Eq. (9). Figs. 2 and 3 present results from numeri-cal calculations [15] of the spectra �(p) and momentum
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Fig. 2. Occupation numbers n(p) (top panel), single-particle spectrum �(p) in units of 10�3�0F (middle panel),and ratio �(p)=T (bottom panel) evaluated for the model(24) with � = 0:07 and gs = 0:45, at four line-type-codedtemperatures (in units of �0F) below T� = 3 � 10�3�0Fdistributions n(p) for a 3D-model system based on theinteraction functionf(q) = gs�2pFM 1q2 + �2p2F (24)with dimensionless parameters gs = 0:45 and � = 0:07,values for which the zero-T phase possesses a single LB.In this model one has T� ' 5�10�5�0F and T� = 3�10�3�0F.The results are to be compared with those in Fig. 4obtained for the model interaction function [15]f(q) = gy �2M e��q=pFq ; (25)for which a 
at portion in the spectrum �(p) is alreadypresent at T = 0. In the interval T ' T� < T�, the spec-
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