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The supercurrent for the surface superconductivity of a flat-band multilayered rhombohedral graphene is
calculated. Despite the absence of dispersion of the excitation spectrum, the supercurrent is finite. The crit-
ical current is proportional to the zero-temperature superconducting gap, i.e., to the superconducting critical
temperature and to the size of the flat band in the momentum space.

1. Introduction. Fermionic systems with disper-
sionless branches of excitation spectrum (flat bands)
have quite unusual properties; nowadays they attract
lots of research interest. Flat bands were predicted
in many condensed matter systems, see for example
Refs. [1-4]. In some cases the flat bands are protected by
topology in momentum space; they emerge on the sur-
faces of gapless topological matter [5] such as surfaces
of nodal superconductors [6, 7], graphene edges [6], sur-
faces of multilayered graphene structures [8-10], and in
the cores of quantized vortices in topological superfluids
and superconductors [5, 11, 12].

The singular density of states (DOS) associated with
the dispersionless spectrum may essentially enhance the
transition temperature opening a new route to room-
temperature superconductivity. The corresponding crit-
ical temperature depends linearly on the pairing interac-
tion strength and can be thus considerably higher than
the usual exponentially small critical temperature in the
bulk [1, 5, 13]. It was shown in [5, 13] that the flat band
that appears on the surface of multilayered rhombohe-
dral graphene is especially favorable for surface super-
conductivity. Formation of surface superconductivity is
enhanced already for a system having N > 3 layers,
where the normal-state spectrum has a slow power-law
dispersion &, o< [p|" as a function of the in-plane mo-
mentum p. The DOS v(§,) x ,(,2_N)/N has a singularity
at zero energy which results in a drastic enhancement of
the critical temperature.

Absence of dispersion in a flat band raises the ques-
tions of superconducting velocity and of the supercur-
rent: Can they be nonzero and, if they can, what is then
the magnitude of the critical current? In this Letter we
address the problem of supercurrent associated with the
surface superconductivity in the flat-band multilayered
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rhombohedral graphene. Based on the model employed
in Ref. [13] for description of the surface superconductiv-
ity we calculate the supercurrent as a response to a small
gradient of the order parameter phase using an approach
similar to that used for calculations of the supercurrent
in a single layer of graphene [14]. We demonstrate that
the supercurrent is finite; the critical current is propor-
tional to the superconducting zero-temperature gap, i.e.,
to the critical temperature, and to the radius of the flat
band in the momentum space. Being produced by the
surface superconductivity, the total current through the
sample is independent of the sample thickness.

2. The model. As in Ref. [13] we consider mul-
tilayered graphene structure of IV layers in the discrete
representation with respect to interlayer coupling. For
simplicity we choose the rhombohedral stacking config-
uration considered in [5,8-10,13] and assume that the
most important are hoppings between the atoms belong-
ing to different sublattices parameterized by a single
hopping energy ¢t. More general form of the multilay-
ered Hamiltonian can be found in Refs. [15, 16]. In the
superconducting case the Hamiltonian has the form of a
matrix in the Nambu space. The Bogoliubov—de Gennes

(BdG) equations are
) (%)= (3)

3 <
where the sum runs over the layers. The normal-state

Z E[ij — ubij
j=1
Hamiltonian [9]

A dij

—H;j + pdi;

Uj U;

vj V;

(1)
6 = (62, 6y), 6+ = (65 £ i6y)/2, and @;, 0; are matri-
ces and spinors in the pseudo-spin space associated with
two sublattices. This Hamiltonian acts on the envelope
function of the in-plane momentum p taken near one of
the Dirac points, i.e., for |p| <« h/a where a is the in-
teratomic distance within a layer; vp = 3toa/2hk, where

Hy; = vp(6 - p)dij — t64-0; 511 — t6_0; 51,
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to is the the hopping energy between nearest-neighbor
atoms belonging to different sublattices on a layer. The
particle-like, @;, and hole-like, ©;, wave functions near
the Dirac point are coupled via the superconducting or-
der parameter A; that can appear in the presence of a
pairing interaction. Here we do not specify the nature
of the pairing. It can be due to either electron-phonon
interaction or other pairing interactions that have been
suggested as a source for intrinsic superconductivity in
graphene, see Refs. [17]. The excitation energy for par-
ticles and holes is measured upwards or downwards, re-
spectively, from the Fermi level which can be shifted
with respect to the Dirac point due to doping. Here we
assume that the shift is the same on all layers. The order
parameter and the Fermi level shift x4 are scalars in the
pseudo-spin space. We assume that A and g are much
smaller than the inter-layer coupling energy ¢ > 0, which
in turn is ¢ < to. Usually, ¢ ~ 0.1ty where ty ~ 3eV
[16].
We decompose the wave function

()= ][5 Yowrs (o ) o

into the spinor functions localized at each sublattice

e[t (1)

We introduce matrices and vectors in the Nambu space

1 0 +
7y = cat=[ % .
0 -1 By

The BdG equations take the form

_Md+] :Edia n 7£ 1a (3)
a,|=Ea&,, n# N, (4)

(2)

¥ [vr (P — iﬁy)a* —td,

['UF (Do + Zpy) tan+1 no

where p is the momentum operator. In Egs. (3) and (4)
we neglect A assuming that A,, # 0 only at the outer-
most layers. The arguments supporting this assumption
are given in Ref. [13]; it was shown that the order para-
meter quickly decays as a function of the distance from
the surface. We also neglect A,, as compared to ¢ in
Egs. (3) and (4) for n = N and n = 1, respectively, as
they lead to higher-order corrections in A/t. The parti-
cle and hole channels are thus decoupled if n # 1, N. Ex-
panding the coefficients in plane waves a, 3 o< ePT+ip=2
we find the energy in terms of in-plane p and transverse
momentum p, (d is the interlayer distance) [9]

E? = v}p® — 2tvppcos(p.d — @) + 2, (5)

where p = ,/p2 + p? and €'® = (p, + ip,)/p. Equations

(3) and (4) determine the coefficients [9, 13]

&t =¢r(p)AT+¢, (P)t 2 (7 E + f)vr (pr — ipy)A~, (6)
&, =C, (P)A™+( (P)t 2 (7 E + fi)vr (pe + ipy) AT, (7)
where

E=(1-wp’/)E, p=(1-vip’/t)i,

while the basis functions are

= [vr (P2 + ipy)/t]n_ ,
= [vr(p2 — ipy)/t]N_n-

Equations (6), (7) include the first-order corrections in
energy. Having an imaginary momentum p, for vgp < t,
these solutions decay away from the surfaces and thus
they describe the surface states. Normalization requires

dZ

et + (@ 7)Ta;]:1.

This gives

d [(A*)Uﬁ + (A*)J’A’] =1—vip*/t*. (8)
A finite order parameter A couples the particle and
hole channels at the outermost layers, 7 =1 and ¢ = N,

—fymdy = Eaf —Aaf,  (9)

7v'3UF(ZA7z_ y) 1
)an Aay, (10)

T3Up (D2 + 1Dy — unoy = Eay —

A:(O A).
A* 0

The boundary conditions (9), (10) select p, and de-
termine 2N particle and hole branches of the energy
spectrum. Looking for the branches that belong to the
surface states with energies of the order of A and pu, we
solve these equations for F < ¢.

3. Supercurrent. The operator of current along
a layer couples the states at different sublattices,
@l (n)6iy p(n) + 9f ,(n)6dy p(n). For example, the
x component of current at layer n is

n)=— ey [at,(p)a;

¥,p
X (1-2fp) (11)

where

where +y labels different states for given p, while f,  is
the distribution function.
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To calculate the supercurrent we use the same ap-
proach as in Ref. [14]. Consider A = |A|etkr.
Separating the order-parameter phase, we put u, =
= u,(p)e!PTE/Ar while v, = v,(p)e!P /2 For
large N > 1 the most important corrections come from
(p £ k/2)N. (The exact condition for N will be estab-
lished later.) We have instead of Egs. (6), (7)

t 2 (fsE+i)vr (ps — ipy) A, (12)
& t 2(f3E+ji)vp (p, +ipy) AT, (13)
where p = p + 73k/2. Equations (9), (10) at the outer-
most layers give

%351;%31(/221— = (E+ mp)At —H|A|AT,  (14)
TEL s pAT = (BE+RE)A™ —H|AJA . (15)
Here

& = thor(pe F ipy) " = 7N, & = t(orp/t)"

Using the spinors in the sublattice space, Egs. (14),
(15) can be written as

X X X ~ X X AJF
Ho+H|b=B), o= " |, 6
where
Hy = 73¢9 NG ¢, — Hji + 71| A| (17)
v (GK) de

H, — e i6:(N-1)¢ (o %p 1
1=¢€ 2 dp (18)

R
In the zero order the coefficients satisfy

x x(0) x (0)
Hop  =E®y

< A e—iNG/2 _ _
¢1,2 = < V1,2 ; ) y Bia = iES_ ) (19)

Ay petiNe/2
z/’3,4 = (

. This equation has four solutions

Ag geiNG/2

As 4etiN0/2 ) » Bsa=+Ey . (20)
— A,

Here
By =1/(& — ) + AP (& + )" +]AP2,
and
Y _Q Ut Y _£ Uy
. C v_ - C uU_
o) )
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Normalization is determined by Eq. (8), |C]? =d!(1—
— v2%.p?/t?), the coherence factors are

ui:i[1+§p:{:ﬁ:|l/2 izi[ _Ep:Fﬁ:II/Z
el E ]l =Tl E ]
The different solutions are orthogonal,

(@)1 ) = Trl() ] = C6 .

The trace is taken over pseudo-spin and Nambu indexes.

If the coefficients AT are taken in the zero order ap-
proximation in k, the product o, e, in Eq. (12) con-
tains the exponents e~* and (k. + ik,)e”%® and van-
ishes after integration over the momentum directions.
Therefore, the basis functions C,% can be taken in zero
approximation in k but the coefficients A* need to be
calculated up to the first order terms in k.

The corrections due to the condensate momentum

can be written as
X bs 0
Yo=Vy + Y Bapls . (21)

Equations (16)—(18) give

(@) Hid, ) (W) Hid, )
6Ea = 2 Baﬂ - == (22)
Cl |C|*(Ea — Ep)
Corrections to energies are
~ pk d¢, ~ pk d¢,
Eijo="——""=EFE Eyg=—"7——"7=—
0E12 = 2p dp D, 0E34 2p dp

which is the usual normal-state Doppler shift. We have
Biz = By1 = B3zs = Byz = 0, while By = B3 =
= —Bz4 = —B42 and Bzg = B32 = Bl4 = B41, where

i([p x k]z) d&p (uiv— +viu_)

2p  dp (Bf - Ep)
i([p x k]z) d&p (upu_ —viv_)
2p dp (Ef +E;)

Bz = —

)

B23:_

The current at layer n in Eq. (11) contains the prod-
uct ¢ = (& /vrp)e!™~Y? which is independent of
the layer number, i.e., of the distance from the surface,
and the products [(E i 2)/tCHCH o (vpp/t)** 1) and
[(E+R)/t]¢*¢ o (vpp/t)2V—™) which decay as func-
tions of the distance from the surfaces. For n ~ 1 or
n ~ N, all these terms are of the order of E/t. We shall
see, however, that it is the constant term that gives the
main contribution to the total current through the sam-
ple defined as I = dZﬁzlj(n). Using

Z /27rh dg,

6*
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we find for the current per unit sample width

I =edNk 5” df” |C|? x

1 Ef Ey\ (uyu_—viv_)?
tanh =2+ tanh — "
YWEI v

Ef Ey\ (upv— +viu_)?
~ (tanh 2o _ tann Zo ) (wso=tor -
( M er 2T> (Bf — Ey)
1 _ Ef 2 Ey
~ a7 (cosh ﬁ + cosh™2 2T>] (23)

The integral in Eq. (23) converges for {, ~ A. To
obtain this expression we had to regularize Eq. (11)
which diverges for large &,. The regularization is de-
scribed in detail in Ref. [14]. In brief, we subtract the
normal current which is obtained from the current op-
erator taken at energies much hlgher than A and T. For
& > ATonehas Bf =€, — i, By =& + 1, u =1,
and v = 0. Therefore, the diverging part of Eq. (11) is

I(®) = —deNk 5” df” |C|2 (24)

This contributes to the normal current which, of course,
turns to zero when the contributions from the entire Bril-
louin zone are collected. Indeed, for A = 0 when the
particle and hole channels separate, the corrections to
A simply correspond to the full shift of the momen-
tum p — p £ k/2 in the particle (hole) wave functions.
As a result, the normal current vanishes after the mo-
mentum integration over the entire Brillouin zone [14].
After subtracting the zero normal current, we arrive at
Eq. (23).

For low temperature T' < |A|, the last two lines in
Eq. (23) turn to zero. The total current thus becomes

_ fp dfp 2 [ 2(uyu_ — U+'U)2]
I =deNk Cl*|— — = = 25
‘ ] €p (Ef +Ey) (25)

(compare to Ref. [14]). For p = 0 we have

3
I= deNk/ 9y |C|2 §—” .
0 E3}

For large N one can consider p as a slow function as
compared to §,. This is equivalent to the assumption
that d [&, (1 —vip?/t?)] /dp = (1 —vip?/t?) (d&,/dp)
ie., that (1 —vip?/t?) > (2/N)(vip®/t?). Since &, ~
~ A we have

1—vpp?/t? =1 (A/t)*™ = (2/N)In(t/A)

which holds for N >> In(¢/A). Therefore, the above con-
dition is satisfied within the logarithmic approximation.

Note that neglecting the terms ¢;'*¢;" and ¢, *(,, in Eq.
(11) that decay away from the surfaces is also legitimate
within the same logarithmic approximationln(¢/A) > 1.
Integrating by parts and using that the integral is deter-
mined by &, ~ A we find

I eNAZ%k [ 1 vip? §p i, = 2eAln(t/A)k
= i 5 = — 1

wh wh

The total current does not depend on the sample thick-
ness Nd as it should be for the surface superconductiv-
ity. The critical current is determined by max(k) ~ &,
where the coherence length is [13] & ~ h/pre = hur/t,

I, ~eAln(t/A)prp.

For nonzero p we find in the same way as in Ref. [14]

In(t/A)k
wh
|A[? el + V|pl* + A2 ]
+ In . (26)
|1l 1A

Recall that Eq. (26) holds for T <« |A|. As distinct
from the case of intrinsic superconductivity in graphene
considered in Refs. [14, 18, 19], the surface supercon-
ductivity gap |A| is suppressed by doping [13], such that
both |A| and T, vanish as p reaches the critical level
pe = 2T¢o.

4. Discussion. As we see, the supercurrent is dis-
tributed uniformly over the sample with a small den-
sity inversely proportional to the total number of lay-
ers N such that the full current through the sample
does not depend on the sample thickness. This is be-
cause the current operator in Eq. (11) couples the
states at different sublattices and thus contains the over-
lap of the wave functions localized at different surfaces,
¢H¢, ~ &/t, which is independent of the transverse
coordinate z = nd. This is a result of the coherence in-
duced in the bulk by the surface superconducting state.
The characteristic energy associated with this coherence
is thus &, which, in turn, is of the order of A, as it follows
from Eq. (23) and from the self-consistency equation for
the order parameter discussed in Ref. [13].

To conclude, we have -calculated the zero-
temperature supercurrent for the surface supercon-
ductivity of a flat-band multilayered rhombohedral
graphene. The supercurrent is finite despite the absence
of dispersion of the excitation spectrum. The critical
current is proportional to the zero-temperature gap, i.e.,
to the superconducting critical temperature and to the
size of the flat band in the momentum space. Nonzero
surface supercurrent can be responsible for the small
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Meissner effect and for the sharp drop in resistance
seen in experiments on graphite [20, 21]. The enhanced
superconducting density has been reported on twin
boundaries in Ba(Fe; _,Co,)2As, [22]. This observation
can also be considered as indications towards surface
superconductivity described by our theory.
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