Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-120
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 94 (2011) | ISSUE 3 | PAGE 240
Crossovers between superconducting symmetry classes
Abstract
We study the average density of states in a small metallic grain coupled to two superconductors with the phase difference π, in a magnetic field. The spectrum of the low-energy excitations in the grain is described by the random matrix theory whose symmetry depends on the magnetic field strength and coupling to the superconductors. In the limiting cases, a pure superconducting symmetry class is realized. For intermediate magnetic fields or couplings to the superconductors, the system experiences a crossover between different symmetry classes. With the help of the supersymmetric σ-model we derive the exact expressions for the average density of states in the crossovers between the symmetry classes A-C and CI-C.