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It was found that tunneling current through a nanometer scale structure with strongly coupled localized
states causes spatial redistribution of localized charges induced by Coulomb correlations. We present here
theoretical investigation of this effect by means of Heisenberg equations for localized states electron filling
numbers. This method allows to take into account pair correlations of local electron density exactly. It is
shown that inverse occupation of the two-level system caused by Coulomb correlations appears in particular
range of applied bias. Described effects can give a possibility of charge manipulation in the proposed system.
We also expect that described results can be observed in tunneling structures with impurities or with small

quantum dots.

1. Introduction. Investigation of tunneling prop-
erties of interacting impurity complexes in the presence
of Coulomb correlations is one of the most important
problems in the physics of nanostructures. Tunneling
current changes localized states electron filling numbers
as a result-the spectrum and electron density of states
are also modified due to Coulomb interaction of local-
ized electrons. Moreover the charge distribution in the
vicinity of such complexes can be tuned by changing the
parameters of the tunneling contact. Self-consistent ap-
proach based on Keldysh diagram technique have been
successfully used to analyze non-equilibrium effects and
tunneling current spectra in the system of two weakly
coupled impurities (when coupling between impurities
is smaller than tunneling rates between energy levels and
tunneling contact leads) in the presence of Coulomb in-
teraction [1]. In the mean-field approximation for mixed
valence regime the dependence of electron filling num-
bers on applied bias voltage and the behaviour of tun-
neling current spectra have been analyzed in [2].

Electron transport even through a single impurity
in the Coulomb blockade and the Kondo regime [3] have
been studied experimentally and is up till now under
theoretical investigation [4-10]. As tunneling coupling
is not negligible the impurity charge is not the discrete
value and one has to deal with impurity electron fill-
ing numbers (which now are continuous variables) de-
termined from kinetic equations.

Analyzing non-equilibrium tunneling processes
through coupled impurities one can reveal switching on
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and off of magnetic regime (electron filling numbers in
the localized states for opposite spins are not equal) on
each impurity atom at particular range of applied bias
voltage [2].

In the present work we consider the opposite case
when coupling between localized electron states strongly
exceeds tunneling transfer rates. This situation can be
experimentally realized when several impurity atoms or
surface defects are situated at the neighboring lattice
sites, so coupling between their electronic states can
strongly exceeds the interaction of these localized states
with continuous spectrum Fig.1 [11]. Results obtained
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Fig.1. (a) — Energy diagram of two-level system. (b) —
Schematic spatial diagram of experimental realization.
Coulomb energy Ui correspond to the interaction between
electrons on different energy levels

in [11] demonstrate switching on and off of two closely
situated impurity atoms in tunneling conductivity due to
the Coulomb interaction. Another possible realization
is two interacting quantum dots on the sample surface
weakly connected with the bulk states. Specific behav-
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iour of such systems results in irregular peaks splitting in
tunneling conductivity with the increasing of intradot in-
teraction. Irregular peaks formation takes place due to
the interplay between strong Coulomb interaction and
resonant tunneling through localized states [12]. At last
it could be a single quantum dot with a few lowest elec-
tron levels lying in relevant energy range. Such systems
can be described by the model including several elec-
tron levels with Coulomb interaction between localized
electrons [13-15]. The authors of [15] showed that in
a two level system Coulomb interaction can cause neg-
ative differential conductivity. But they regarded elec-
trons as a spinless particles and assume that Coulomb
potential is infinitely large. So they do not take into ac-
count any nontrivial pair correlations in the system. If
the distance between impurities is smaller than localiza-
tion radius, strong enough correlation effects arise which
modify the spectrum of the whole complex. Electronic
structure of such complexes can be tuned both by ex-
ternal electric field which changes the values of single
particle levels and by electron correlations of localized
electronic states. One can expect that tunneling current
induces non-equilibrium spatial redistribution of local-
ized charges and gives possibility of local charge density
manipulation strongly influenced by Coulomb correla-
tions. In some sense these effects are similar to the “co-
tunneling” observed in [16], [17]. Moreover Coulomb
interaction of localized electrons can be responsible for
inverse occupation of localized electron states. These ef-
fects can be clearly seen when single electron levels have
different spatial symmetry.

To understand such correlation induced “charge”
switching it’s sufficient to analyze Heisenberg equations
for localized states total electron filling numbers tak-
ing into account pair correlations of local electron den-
sity [13]. If one is interested in kinetic properties and
changes of local charge density for the applied bias range
higher than the value of energy levels tunneling broad-
ening modification of initial density of states due to the
Kondo effect can be neglected. In this case for the fi-
nite number of localized electron levels one can obtain
closed system of equations for electron filling numbers
and their higher order correlations.

2. Suggested model. We shall analyze tunneling
through the two-level system with Coulomb interaction
Fig. 1. The model system can be described by the Hamil-
tonian H:

o +
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+ Z tpCpyCic + h.cC. (1)

pioc

Indices k and p label continuous spectrum states in the
left (sample) and right (tip) leads of tunneling con-
tact respectively; ty(,) — tunneling transfer amplitudes
between continuous spectrum states and two-level sys-
tem with elctron levels €; and we assume here that
tir(p) = ta2r(p)- Operators c:(p)/ck(p) correspond to elec-
trons creation/annihilation in the continuous spectrum
states k(p); ni, = c;. cio — two-level system electron fill-
ing numbers, where operator Cio, destroys electron with

spin o on the energy level ;; U7;” is the on-site Coulomb
repulsion of localized electrons.
Tunneling current through the two-level system can

be written as
I =1, = Zﬁ]w = Ztk(<ck+crci0> — <Cz';ckg>). (2)
ko kio

Let us consider & = 1 further on. We use Heisenberg
motion equation to calculate (czaciﬁ :

'aczacif" _ + +
4 ot - (ai - é'k)Cko_Cio- + Uiinifo'ckacio +
+ Usj(njo + nj—o)ci, Cic — tr(nic — fr) +
Y ity T Dt pcio =0, (3)
K £k itj
where

/]?k = CkJro,CkU. (4)

Neglecting changes of electron spectrum and local
density of states in the tunneling contact leads due to
the tunneling current we uncouple conduction and two-
level system electron filling numbers. This approxima-
tion means that we neglect the level width, compared to
bias scale, Coulomb repulsion and other energy parame-
ters. In this approximation we also lost any correlations
between localized and conduction band electrons (like
Kondo effect), but these effects are out of the scope of
the paper. On the other hand this approximation allows
us to take into account all correlations between localized
electrons exactly. Then expression for the tunneling cur-
rent can be derived with the help of Eq. (3) by the follow-
ing way. We multiply Eq. (3) by various combinations
of the operators n;,,nj, and use relations nfa
nir (1 — nir) = 0. That gives us closed system of equa-
tions for correlators (ckJracw), (ni,,,c:aci,,) and so on.
After summation over k one can get an equation which
describe tunneling current I, from the left lead to the
first level in the two-level system:

= Njo,
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The total current is a sum of currents through each
level:

Iy = Ijio + Iiao (6)

Where expression for the tunneling current Iys, can
be obtained by changing indexes 1 <+ 2 in equation for
the tunneling current I, .

In what follows we shall neglect terms tkcﬁcj,, and
tfkczack:(7 in expression (5) as they correspond to the
next order perturbation theory in the parameter I';/e;.
Relaxation rates I'y(,) = Wti(p) vy are determined by
electron tunneling transitions from two-level system to
the leads k (sample) and p (tip) continuum states; vy —
continuous spectrum density of states.

Now the problem reduced to calculation of (n;,)
and various m;, correlators which are not trivial due
to Coulomb interaction. Equations for filling numbers
ni, and ns, can be found from the conditions:

8”10
W = Iy + Iplo’ = 0;
anZa
—— = I, Iy = )
ot k20 + p2 0 (7)

where tunneling current I,, can be easily determined
from Iy, by changing indexes k <> p.

In this paper we shall analyze the situation when
Coulomb energy values are large and condition U;; >
> gi/; can be taken into account. It means that if one
has to calculate tunneling current through such system
it is necessary to find all pair filling numbers correla-
tors in the energy range e; + U;;. So we retain the
terms containing fi(,)(e; + Us;) and neglect all higher
orders correlators and pair correlators which contain
Trw) (i + Usj + Unt).

Pair filling numbers correlators can be found in the
following way:

anio_n. ’ on; on.
jo _ o jo'
< ot > < ot n]">+< at n”>' )

For short we consider here the paramagnetic situa-
tion: (nir) = (ni—o) and also (RiyNjo) = (NieNj—o).
So a system of equations for pair correlators K;; =
= (n1eNi—o), K2z = (N2on2—0) and K12 = (n1on20)
for large Coulomb energies U;; > €;/; is closed if we
neglect triple correlators:

a1 a2 a3 Ky

az1 a2z azs | X | Ki2 | = F, 9)

asy ass ass Kj»

where
a1 = a3 =1,
a1z = az1 =0,
aijs = 27LT(€1 + Ull)a
Q22 = ZnT(é'z + U22), (10)
1 ¢
a3l = En (€2 + U12),

1 1
az2 =1+ EnT(sl + Ur2) + EnT(Ez + Us2),

1
az3 = E’I'LT(El + U12) (11)
and

’I’LT(61 + U11)’I’L10—
F = nT(e2 + Uz2)nay - (12)

%HT(& + Ur2)n2s + %HT(Ez + Ur2)n1s

Where we introduced tunneling filling numbers
n" (e:), n" (e; + Uy;) and @; which have the form:
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Fig. 2. Two-level system filling numbers (a)—(c) and tunneling current (d)—(f) as a function of applied bias voltage in the case
when both energy levels are situated above the sample Fermi level. Parameters ¢; = 0.6, e2 = 0.3, Uiz = 1.0, U1 = 1.4,
Uz = 1.5 are the same for all the figures. (a), (d) — I'x = 0.01, I', = 0.01. (b), () - I'x = 0.05, ', = 0.01. (c), (f) —

Ty =0.01, T, = 0.03

L fr(ei) + Tpfplei)

T( ) _
n (&) Ty +1, ’
T fr(ei +Uij) + Tpfples + Ui )
T(.. ) — kJE\C1 ij pJp J
n”(e; + Usj) Ty +T, )
_ Tk frii + Dpfoii
T _ ‘tkJkij pJpij
nz] - Fk+rp ) (13)
where
Frij = fu(e:) — fules + Usj). (14)

The final expression for the tunneling current in
terms of the correlators K, determined from Eq. (9), has
the form:

Lie = Tr{(n1s)—(1 = (n15) — 2(nas) + Koz + 2K13) X
X fr(e1) — ((n1o) — 2K12) fr(e1 + Un1) —
— 2({n2y) — K12 — Ka2) fr(e1 + U1a). (15)
Egs. (7) and (9) allows to determine the filling num-
bers fron the following system, since the correlators K
have been calculated:
N1 (1 + A1) + noo - 201, — Kaa[nT (1) —
—2nT(e1 + Ur2)] + 2K12[-nT(e1) +
+nT(er + Un1) + nT(e1 + Ur2)] = nT(e1),
Nao (1 + Ady) + N1y - 273 — K11[nT (e2) —
—2nT(e3 + Up2)] + 2K12[-n"T(e2) +
+nT(es + Usz) + nr(e2 + Ur2)] = nT(e2).  (16)
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Let us give an answer for two particular cases. The
first one is when all Coulomb energies are extremely
large U;; — oo. In this situation expressions for filling
numbers will have the following form:

n'(e1)[1 —n¥(e2)]
[1+nT(e)][1 + nT(e2)] — 4nT (e1)n" (e2)’
n'(e2)[1 — n¥(e1)]
[1+nT(e)][1+ nT(e2)] — 4nT (e1)n T (e2)
(17)

Nig =

N2e =

And the second one is when energy levels are very
close to each other (for example two degenerate in or-
bital quantum number states) €; = €2 = ¢ and almost
the same Coulomb repulsion for any states U;; = U. In
this case the filling numbers have the form:

n'(e)

" T T T (o)

(18)

3. Main results and discussion. The behaviour
of non-equilibrium electron filling numbers with chang-
ing of applied bias and tunneling conductivity character-
istics obtained from equations (9)—(15) are depicted in
Figs. 2-4.

We consider different experimental realizations:
both energy levels are situated above the sample Fermi
level (Fig.2); both levels below sample Fermi level
(Fig.3) and one of the energy levels is located above
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Fig. 3. Two-level system filling numbers (a)—(c) and tunneling current (d)—(f) as a function of applied bias voltage in the case
when both energy levels are situated below the sample Fermi level. Parameters e; = —0.1, e2 = —0.3, U12 = 1.0, U1, = 1.5,
Uz = 1.6 are the same for all the figures. (a), (d) — I'x = 0.01, I', = 0.01. (b), (¢) - I'x = 0.05, ', = 0.01. (c), (f) —
T) = 0.01, T, = 0.03
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Fig. 4. Two-level system filling numbers (a)—(c) and tunneling current (d)—(f) as a function of applied bias voltage in the case
when one energy level is situated above and another one below the sample Fermi level. Parameters e; = 0.2, e2 = —0.3,
Uiz = 1.0, U1 = 1.4, Uz2 = 1.7 are the same for all the figures. (a), (d) - I'x = 0.01, ', = 0.01. (b), (e) - I'x = 0.05,
T, = 0.01. (c), (f) - T = 0.01, T, = 0.03

the Fermi level and another one below the Fermi level From Figs. 2-4 one can clearly see that sharp charge
(Fig.4). Applied bias is assumed to act on the right redistribution between two electron states occurs at
lead (tip), moving it’s Fermi level relatively to the  some values of applied bias voltage (Figs.2-4). When
Fermi level of the left lead (sample). both levels are situated above (Fig.2) or below (Fig. 3)
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the sample Fermi level there are two possibilities for
charge distribution in the two-level system. The first
one corresponds to the case when local charge is mostly
accumulated on the lower electron level €3, n; < ng
(62 < eV < €1, ea + U2 < €V < g1 + Uyp and
€2+ Usx < €V < &1 + Uy on Fig.2 and Fig.3). The
second one deals with the case when charge is localized
on both levels equally n1, = ny (61 < eV < &3 + Uya,
€14+U12 < eV <ey+Uszs and €1 +Uq1 < eV in Fig. 2 and
Fig.3). The most interesting effect is that Coulomb cor-
relations induce sudden jumps of each level filling num-
bers at certain values of applied bias.

So if electron states have essentially different sym-
metry one can expect charge accumulation in various
spatial areas and thus the possibility of local charge ma-
nipulation appears.

When both electron level energies are situated be-
low the sample Fermi level upper electron state becomes
empty (n; = 0) for two ranges of applied bias voltage
(62 <eV<<e andes +Uix < eV <e1 +Upa ) (Flg 3)

Described peculiarities take place for all the ratios
between tunneling transfer rates I';, and I',, though for
I'y, > I'p they are usually more pronounced.

The other interesting effect is the possibility of in-
verse occupation of the two-level system due to Coulomb
interaction in special range of applied bias (Fig.4). In
the absence of Coulomb interaction difference of electron
filling numbers are determined by the electron tunneling
rates n1 —na ~ Yr1Yp2 — Vp1Yk2- S0 without Coulomb in-
teraction, for our choice Y (p)1 = Yi(p)2, difference of the
two levels occupation numbers turns to zero. Coulomb
interaction of localized electrons in the two-level system
results in inverse occupation of the two levels at the wide
range of applied bias voltage. This situation is clearly
demonstrated in the Fig. 4.

When the applied bias doesn’t exceed value €1 + Uy
all the charge is localized on the lower energy level
(ny = 0). With the increasing of the applied bias in-
verse occupation takes place and localized charge in the
system redistributes. Local charge is mostly accumu-
lated on the upper level when applied bias value exceeds
€1+ U11. Two-level system demonstrates such behaviour
if the system more strongly coupled with tunneling con-
tact lead k (sample) (Fig.4b). Qualitatively the we see
if the tunneling contact is symmetrical. But if tunnel-
ing rate to the lead p (tip) exceeds tunneling rate to the
lead k (sample), then we have not found inverse occupa-
tion. In this case with the increasing of applied bias up-
per electron state charge also increases but local charge
continue being mostly accumulated on the lower elec-
tron state. So this effect is essentially of nonequilibrium
nature.
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Tunneling current as a function of applied bias volt-
age for different level’s positions is shown in (Figs. 2-4d—
f). Tunneling current amplitudes are normalized on 2T
everywhere in the paper. For all the values of the sys-
tem parameters tunneling current dependence on applied
bias has a step structure. Height and length of the steps
depend on the parameters of the tunneling contact (tun-
neling transfer rates and values of Coulomb energies).
When both energy levels are above the Fermi level one
can find six steps in the tunneling current (Fig. 2d—f). If
both levels are situated below the Fermi level there are
four steps in tunneling current (Fig. 3d—f) and the upper
electron level doesn’t appear as a step in current-voltage
characteristics but charge redistribution takes place due
to Coulomb correlations. One can also find four steps in
the case when only lower energy level is situated below
the Fermi level (Fig. 4d—f).

4. Conclusion. It was shown that for a two-level
system with strong coupling between localized electron
states it is necessary to take into account high order
correlators of local electron density if one calculates the
tunneling current. The importance of these Coulomb
correlation effects is different for various electron levels
location relative to the sample Fermi level and various
parameters of the contact. We revealed that charge re-
distribution between electron states takes place in the
suggested model at some bias voltage when both electron
levels are situated above or below the sample Fermi level.
Another interesting effect concerned with Coulomb cor-
relations consists in inverse occupation of localized elec-
trons states within some bias range if electron levels are
localized on the opposite sites of the sample Fermi level.
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