
Pis'ma v ZhETF, vol. 94, iss. 5, pp. 422 { 428 c 2011 September 10Correlation induced switching of local spatial charge distribution intwo-level systemP. I. Arseyev�, N. S.Maslova+, V.N.Mantsevich+1)�P.N.Lebedev Physical institute of RAS, 119991 Moscow, Russia+Moscow State University, Department of Physics, 119991 Moscow, RussiaSubmitted 9 June 2011Resubmitted 14 July 2011It was found that tunneling current through a nanometer scale structure with strongly coupled localizedstates causes spatial redistribution of localized charges induced by Coulomb correlations. We present heretheoretical investigation of this e�ect by means of Heisenberg equations for localized states electron �llingnumbers. This method allows to take into account pair correlations of local electron density exactly. It isshown that inverse occupation of the two-level system caused by Coulomb correlations appears in particularrange of applied bias. Described e�ects can give a possibility of charge manipulation in the proposed system.We also expect that described results can be observed in tunneling structures with impurities or with smallquantum dots.1. Introduction. Investigation of tunneling prop-erties of interacting impurity complexes in the presenceof Coulomb correlations is one of the most importantproblems in the physics of nanostructures. Tunnelingcurrent changes localized states electron �lling numbersas a result-the spectrum and electron density of statesare also modi�ed due to Coulomb interaction of local-ized electrons. Moreover the charge distribution in thevicinity of such complexes can be tuned by changing theparameters of the tunneling contact. Self-consistent ap-proach based on Keldysh diagram technique have beensuccessfully used to analyze non-equilibrium e�ects andtunneling current spectra in the system of two weaklycoupled impurities (when coupling between impuritiesis smaller than tunneling rates between energy levels andtunneling contact leads) in the presence of Coulomb in-teraction [1]. In the mean-�eld approximation for mixedvalence regime the dependence of electron �lling num-bers on applied bias voltage and the behaviour of tun-neling current spectra have been analyzed in [2].Electron transport even through a single impurityin the Coulomb blockade and the Kondo regime [3] havebeen studied experimentally and is up till now undertheoretical investigation [4{10]. As tunneling couplingis not negligible the impurity charge is not the discretevalue and one has to deal with impurity electron �ll-ing numbers (which now are continuous variables) de-termined from kinetic equations.Analyzing non-equilibrium tunneling processesthrough coupled impurities one can reveal switching on1)e-mail: vmantsev@spmlab.phys.msu.ru

and o� of magnetic regime (electron �lling numbers inthe localized states for opposite spins are not equal) oneach impurity atom at particular range of applied biasvoltage [2].In the present work we consider the opposite casewhen coupling between localized electron states stronglyexceeds tunneling transfer rates. This situation can beexperimentally realized when several impurity atoms orsurface defects are situated at the neighboring latticesites, so coupling between their electronic states canstrongly exceeds the interaction of these localized stateswith continuous spectrum Fig. 1 [11]. Results obtained
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Fig. 1. (a) { Energy diagram of two-level system. (b) {Schematic spatial diagram of experimental realization.Coulomb energy U12 correspond to the interaction betweenelectrons on di�erent energy levelsin [11] demonstrate switching on and o� of two closelysituated impurity atoms in tunneling conductivity due tothe Coulomb interaction. Another possible realizationis two interacting quantum dots on the sample surfaceweakly connected with the bulk states. Speci�c behav-422 �¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 5 { 6 2011



Correlation induced switching of local spatial charge distribution in two-level system 423iour of such systems results in irregular peaks splitting intunneling conductivity with the increasing of intradot in-teraction. Irregular peaks formation takes place due tothe interplay between strong Coulomb interaction andresonant tunneling through localized states [12]. At lastit could be a single quantum dot with a few lowest elec-tron levels lying in relevant energy range. Such systemscan be described by the model including several elec-tron levels with Coulomb interaction between localizedelectrons [13{15]. The authors of [15] showed that ina two level system Coulomb interaction can cause neg-ative di�erential conductivity. But they regarded elec-trons as a spinless particles and assume that Coulombpotential is in�nitely large. So they do not take into ac-count any nontrivial pair correlations in the system. Ifthe distance between impurities is smaller than localiza-tion radius, strong enough correlation e�ects arise whichmodify the spectrum of the whole complex. Electronicstructure of such complexes can be tuned both by ex-ternal electric �eld which changes the values of singleparticle levels and by electron correlations of localizedelectronic states. One can expect that tunneling currentinduces non-equilibrium spatial redistribution of local-ized charges and gives possibility of local charge densitymanipulation strongly inuenced by Coulomb correla-tions. In some sense these e�ects are similar to the \co-tunneling" observed in [16], [17]. Moreover Coulombinteraction of localized electrons can be responsible forinverse occupation of localized electron states. These ef-fects can be clearly seen when single electron levels havedi�erent spatial symmetry.To understand such correlation induced \charge"switching it's su�cient to analyze Heisenberg equationsfor localized states total electron �lling numbers tak-ing into account pair correlations of local electron den-sity [13]. If one is interested in kinetic properties andchanges of local charge density for the applied bias rangehigher than the value of energy levels tunneling broad-ening modi�cation of initial density of states due to theKondo e�ect can be neglected. In this case for the �-nite number of localized electron levels one can obtainclosed system of equations for electron �lling numbersand their higher order correlations.2. Suggested model. We shall analyze tunnelingthrough the two-level system with Coulomb interactionFig. 1. The model system can be described by the Hamil-tonian Ĥ :Ĥ =Xi� "ini� +Xk� "kc+k�ck� +Xp� "pc+p�cp�++ Xij��0 U��0ij ni�nj�0 +Xki� tkc+k�ci�+

+Xpi� tpc+p�ci� + h:c: (1)Indices k and p label continuous spectrum states in theleft (sample) and right (tip) leads of tunneling con-tact respectively; tk(p) { tunneling transfer amplitudesbetween continuous spectrum states and two-level sys-tem with elctron levels "i and we assume here thatt1k(p) = t2k(p). Operators c+k(p)=ck(p) correspond to elec-trons creation/annihilation in the continuous spectrumstates k(p); ni� = c+i�ci� { two-level system electron �ll-ing numbers, where operator ci� destroys electron withspin � on the energy level "i; U��0ij is the on-site Coulombrepulsion of localized electrons.Tunneling current through the two-level system canbe written asI = Ik� =Xk� _nk� =Xki� tk(hc+k�ci�i � hc+i�ck�i): (2)Let us consider ~ = 1 further on. We use Heisenbergmotion equation to calculate hc+k�ci�i :i@c+k�ci�@t = ("i � "k)c+k�ci� + Uiini��c+k�ci� ++ Uij(nj� + nj��)c+k�ci� � tk(ni� � bfk) ++ Xk0 6=k tk0 c+k�ck0� +Xi 6=j tkc+j�ci� = 0; (3)where bfk = c+k�ck� : (4)Neglecting changes of electron spectrum and localdensity of states in the tunneling contact leads due tothe tunneling current we uncouple conduction and two-level system electron �lling numbers. This approxima-tion means that we neglect the level width, compared tobias scale, Coulomb repulsion and other energy parame-ters. In this approximation we also lost any correlationsbetween localized and conduction band electrons (likeKondo e�ect), but these e�ects are out of the scope ofthe paper. On the other hand this approximation allowsus to take into account all correlations between localizedelectrons exactly. Then expression for the tunneling cur-rent can be derived with the help of Eq. (3) by the follow-ing way. We multiply Eq. (3) by various combinationsof the operators ni� ; nj� and use relations n2i� = ni� ,ni�(1� ni�) = 0. That gives us closed system of equa-tions for correlators hc+k�ci�i, hni��c+k�ci�i and so on.After summation over k one can get an equation whichdescribe tunneling current Ik1� from the left lead to the�rst level in the two-level system:�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 5 { 6 2011



424 P. I. Arseyev, N. S.Maslova, V.N.ManstevichIk1� = �k�hn1�i+Xj 6=ihc+j�ci�i �� h(1� n1��)(1� n2��)(1� n2�)ifk("1)�� hn1��(1� n2��)(1� n2�)ifk("1 + U11)��X�0 hn2�0 (1� n2��0 )(1� n1��)ifk("1 + U12)��X�0 hn1��n2�0 (1� n2��0 )ifk("1 + U11 + U12)�� hn2�n2��(1� n1��)ifk("1 + 2U12)�� hn1��n2��n2�ifk("1 + U11 + 2U12)�++ Xk0 6=khtktk0 c+k�ck0�i ���� (1� n1��)(1� n2��)(1� n2�)"1 � "k �++�n1��(1� n2��)(1� n2�)"1 + U11 � "k �++�P�0 n2�0 (1� n1��)(1� n2��0 )"1 + U12 � "k �++�P�0 n1��n2�0 (1� n2��0 )"1 + U11 + U12 � "k �++�n2��n2�(1� n1��)"1 + 2U12 � "k �++ � n1��n2��n2�"1 + U11 + 2U12 � "k�� : (5)The total current is a sum of currents through eachlevel: Ik� = Ik1� + Ik2� : (6)Where expression for the tunneling current Ik2� canbe obtained by changing indexes 1 $ 2 in equation forthe tunneling current Ik1� .In what follows we shall neglect terms tkc+i�cj� andtkc+k�ck0� in expression (5) as they correspond to thenext order perturbation theory in the parameter �i="i.Relaxation rates �k(p) = � t2k(p) �0 are determined byelectron tunneling transitions from two-level system tothe leads k (sample) and p (tip) continuum states; �0 {continuous spectrum density of states.Now the problem reduced to calculation of hni�iand various ni� correlators which are not trivial dueto Coulomb interaction. Equations for �lling numbersn1� and n2� can be found from the conditions:@n1�@t = Ik1� + Ip1� = 0;@n2�@t = Ik2� + Ip2� = 0; (7)

where tunneling current Ip� can be easily determinedfrom Ik� by changing indexes k $ p.In this paper we shall analyze the situation whenCoulomb energy values are large and condition Uij �� "i=j can be taken into account. It means that if onehas to calculate tunneling current through such systemit is necessary to �nd all pair �lling numbers correla-tors in the energy range "i + Uij . So we retain theterms containing fk(p)("i + Uij) and neglect all higherorders correlators and pair correlators which containfk(p)("i + Uij + Ukl).Pair �lling numbers correlators can be found in thefollowing way:�@ni�nj�0@t � = �@ni�@t nj�0�+�@nj�0@t ni�� : (8)For short we consider here the paramagnetic situa-tion: hni�i = hni��i and also hni�nj�i = hni�nj��i.So a system of equations for pair correlators K11 �� hn1�n1��i, K22 � hn2�n2��i and K12 � hn1�n2�ifor large Coulomb energies Uij � "i=j is closed if weneglect triple correlators:0B@a11 a12 a13a21 a22 a23a31 a32 a331CA�0B@K11K12K221CA = F; (9)where a11 = a23 = 1;a13 = a21 = 0;a12 = 2nT("1 + U11);a22 = 2nT("2 + U22); (10)a31 = 12nT("2 + U12);a32 = 1 + 12nT("1 + U12) + 12nT("2 + U12);a33 = 12nT("1 + U12) (11)andF = 0B@ nT("1 + U11)n1�nT("2 + U22)n2�12nT("1 + U12)n2� + 12nT("2 + U12)n1�1CA : (12)Where we introduced tunneling �lling numbersnT("i), nT("i + Uij) and ~nTij which have the form:�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 5 { 6 2011
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Fig. 2. Two-level system �lling numbers (a){(c) and tunneling current (d){(f) as a function of applied bias voltage in the casewhen both energy levels are situated above the sample Fermi level. Parameters �1 = 0:6, �2 = 0:3, U12 = 1:0, U11 = 1:4,U22 = 1:5 are the same for all the �gures. (a), (d) { �k = 0:01, �p = 0:01. (b), (e) { �k = 0:05, �p = 0:01. (c), (f) {�k = 0:01, �p = 0:03nT("i) = �kfk("i) + �pfp("i)�k + �p ;nT("i + Uij) = �kfk("i + Uij) + �pfp("i + Uij)�k + �p ;~nTij = �k~fkij + �p~fpij�k + �p ; (13)where ~fkij = fk("i)� fk("i + Uij): (14)The �nal expression for the tunneling current interms of the correlatorsK, determined from Eq. (9), hasthe form:Ik1� = �kfhn1�i�(1� hn1�i � 2hn2�i+K22 + 2K12)�� fk("1)� (hn1�i � 2K12)fk("1 + U11)�� 2(hn2�i �K12 �K22)fk("1 + U12): (15)Eqs. (7) and (9) allows to determine the �lling num-bers fron the following system, since the correlators Khave been calculated:n1�(1 + ~nT11) + n2� � 2~nT12 �K22[nT ("1)�� 2nT("1 + U12)] + 2K12[�nT("1) ++ nT("1 + U11) + nT("1 + U12)] = nT("1);n2�(1 + ~nT22) + n1� � 2~nT21 �K11[nT("2)�� 2nT("2 + U12)] + 2K12[�nT("2) ++ nT("2 + U22) + nT("2 + U12)] = nT("2): (16)

Let us give an answer for two particular cases. The�rst one is when all Coulomb energies are extremelylarge Uij ! 1. In this situation expressions for �llingnumbers will have the following form:n1� = nT("1)[1� nT("2)][1 + nT("1)][1 + nT("2)]� 4nT("1)nT("2) ;n2� = nT("2)[1� nT("1)][1 + nT("1)][1 + nT("2)]� 4nT("1)nT("2) : (17)And the second one is when energy levels are veryclose to each other (for example two degenerate in or-bital quantum number states) "1 = "2 = " and almostthe same Coulomb repulsion for any states Uij = U . Inthis case the �lling numbers have the form:n� = nT(")1 + 3nT(") : (18)3. Main results and discussion. The behaviourof non-equilibrium electron �lling numbers with chang-ing of applied bias and tunneling conductivity character-istics obtained from equations (9){(15) are depicted inFigs. 2{4.We consider di�erent experimental realizations:both energy levels are situated above the sample Fermilevel (Fig. 2); both levels below sample Fermi level(Fig. 3) and one of the energy levels is located above�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 5 { 6 2011
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Fig. 3. Two-level system �lling numbers (a){(c) and tunneling current (d){(f) as a function of applied bias voltage in the casewhen both energy levels are situated below the sample Fermi level. Parameters �1 = �0:1, �2 = �0:3, U12 = 1:0, U11 = 1:5,U22 = 1:6 are the same for all the �gures. (a), (d) { �k = 0:01, �p = 0:01. (b), (e) { �k = 0:05, �p = 0:01. (c), (f) {�k = 0:01, �p = 0:03
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Fig. 4. Two-level system �lling numbers (a){(c) and tunneling current (d){(f) as a function of applied bias voltage in the casewhen one energy level is situated above and another one below the sample Fermi level. Parameters �1 = 0:2, �2 = �0:3,U12 = 1:0, U11 = 1:4, U22 = 1:7 are the same for all the �gures. (a), (d) { �k = 0:01, �p = 0:01. (b), (e) { �k = 0:05,�p = 0:01. (c), (f) { �k = 0:01, �p = 0:03the Fermi level and another one below the Fermi level(Fig. 4). Applied bias is assumed to act on the rightlead (tip), moving it's Fermi level relatively to theFermi level of the left lead (sample). From Figs. 2{4 one can clearly see that sharp chargeredistribution between two electron states occurs atsome values of applied bias voltage (Figs. 2{4). Whenboth levels are situated above (Fig. 2) or below (Fig. 3)�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 5 { 6 2011



Correlation induced switching of local spatial charge distribution in two-level system 427the sample Fermi level there are two possibilities forcharge distribution in the two-level system. The �rstone corresponds to the case when local charge is mostlyaccumulated on the lower electron level "2, n1 < n2("2 < eV < "1, "2 + U12 < eV < "1 + U12 and"2 + U22 < eV < "1 + U11 on Fig. 2 and Fig. 3). Thesecond one deals with the case when charge is localizedon both levels equally n1 = n2 ("1 < eV < "2 + U12,"1+U12 < eV < "2+U22 and "1+U11 < eV in Fig. 2 andFig. 3). The most interesting e�ect is that Coulomb cor-relations induce sudden jumps of each level �lling num-bers at certain values of applied bias.So if electron states have essentially di�erent sym-metry one can expect charge accumulation in variousspatial areas and thus the possibility of local charge ma-nipulation appears.When both electron level energies are situated be-low the sample Fermi level upper electron state becomesempty (n1 = 0) for two ranges of applied bias voltage("2 < eV < "1 and "2 +U12 < eV < "1 +U12 ) (Fig. 3).Described peculiarities take place for all the ratiosbetween tunneling transfer rates �k and �p, though for�k > �p they are usually more pronounced.The other interesting e�ect is the possibility of in-verse occupation of the two-level system due to Coulombinteraction in special range of applied bias (Fig. 4). Inthe absence of Coulomb interaction di�erence of electron�lling numbers are determined by the electron tunnelingrates n1�n2 � k1p2�p1k2. So without Coulomb in-teraction, for our choice k(p)1 = k(p)2, di�erence of thetwo levels occupation numbers turns to zero. Coulombinteraction of localized electrons in the two-level systemresults in inverse occupation of the two levels at the widerange of applied bias voltage. This situation is clearlydemonstrated in the Fig. 4.When the applied bias doesn't exceed value "1+U12all the charge is localized on the lower energy level(n1 = 0). With the increasing of the applied bias in-verse occupation takes place and localized charge in thesystem redistributes. Local charge is mostly accumu-lated on the upper level when applied bias value exceeds"1+U11. Two-level system demonstrates such behaviourif the system more strongly coupled with tunneling con-tact lead k (sample) (Fig. 4b). Qualitatively the we seeif the tunneling contact is symmetrical. But if tunnel-ing rate to the lead p (tip) exceeds tunneling rate to thelead k (sample), then we have not found inverse occupa-tion. In this case with the increasing of applied bias up-per electron state charge also increases but local chargecontinue being mostly accumulated on the lower elec-tron state. So this e�ect is essentially of nonequilibriumnature.

Tunneling current as a function of applied bias volt-age for di�erent level's positions is shown in (Figs. 2{4d{f). Tunneling current amplitudes are normalized on 2�keverywhere in the paper. For all the values of the sys-tem parameters tunneling current dependence on appliedbias has a step structure. Height and length of the stepsdepend on the parameters of the tunneling contact (tun-neling transfer rates and values of Coulomb energies).When both energy levels are above the Fermi level onecan �nd six steps in the tunneling current (Fig. 2d{f). Ifboth levels are situated below the Fermi level there arefour steps in tunneling current (Fig. 3d{f) and the upperelectron level doesn't appear as a step in current-voltagecharacteristics but charge redistribution takes place dueto Coulomb correlations. One can also �nd four steps inthe case when only lower energy level is situated belowthe Fermi level (Fig. 4d{f).4. Conclusion. It was shown that for a two-levelsystem with strong coupling between localized electronstates it is necessary to take into account high ordercorrelators of local electron density if one calculates thetunneling current. The importance of these Coulombcorrelation e�ects is di�erent for various electron levelslocation relative to the sample Fermi level and variousparameters of the contact. We revealed that charge re-distribution between electron states takes place in thesuggested model at some bias voltage when both electronlevels are situated above or below the sample Fermi level.Another interesting e�ect concerned with Coulomb cor-relations consists in inverse occupation of localized elec-trons states within some bias range if electron levels arelocalized on the opposite sites of the sample Fermi level.This work was partially supported by RFBRgrants and Leading Scienti�c School Grant #NSch-4895.2010.2.1. L.V. Keldysh, Sov. Phys. JETP 20, 1018 (1964).2. P. I. Arseyev, N. S. Maslova, V. I. Panov, and S.V. Savi-nov, JETP 121, 225 (2002).3. J. Kondo, Prog. Theor. Phys. 32, 37 (1964).4. Y. Goldin and Y. Avishai, Phys. Rev. B 61, 16750(2000).5. A.-P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev.B 50, 5528 (1994).6. J. Konig, T. Pohjola, H. Schoeller, and G. Schon, Phys-ica E 6, 371 (2000).7. Y. Meir, N. S. Wingreen, and P.A. Lee, Phys. Rev. Lett.66, 3048 (1991).8. D.V. Averin, A.N. Korotkov, and K.K. Likharev, Phys.Rev. B 44, 6191 (1991).9. I.M. Ruzin, V. Chandrasekhar, E. Levin, and L. Glaz-man, Phys. Rev. B 45, 13469 (1992).�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 5 { 6 2011
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