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We study the scaling of the localization length of two interacting bosons in a one-dimensional random lattice
with the single particle localization length. We consider the short-range interaction assuming that the particles
interact when located both on the same site. We discuss several regimes, among them one interesting weak
Fock space disorder regime. In this regime we obtain a weak logarithmic scaling law. Numerical benchmark

data support the absence of any strong enhancement of the two particle localization length.

1. Introduction. Quantum single particle dynam-
ics in one-dimensional disordered lattices with uncorre-
lated random onsite energies exhibits Anderson localiza-
tion [1]. The asymptotic spatial decay of an eigenvector
is exponential and given by Al(") ~ e where ¢V is
the localization length of an eigenmode v with the eigen-
value \,, and the integer [ counts the lattice site (see also
e.g. [2]). The localization length is bounded from above.

In [3] Dorokhov studied one-dimensional continu-
ous model with harmonic attraction between two par-
ticles placed in weak random potential. It was shown
that defects induce transitions between the internal-
quantization states leading to the possible increase of
the two-particle localization length which is a measure
for coherent propagation of two interacting particles.
The interplay of disorder and interaction of two in-
teracting particles (TIP), interacting in a random one-
dimensional chain was later considered by Shepelyansky
(Sh94) [4]. The conclusion was that two particles might
propagate coherently over distances & much larger than
the single particle localization length &;, if both par-
ticles are launched within a distance of & from each
other. Sh94 used an analogy between the two-particle
eigenvalue problem and that of banded random matrices,
and made an assumption about the scaling properties of
overlap integrals which connect different noninteracting
Fock eigenstates in the presence of interaction. He fi-
nally concluded that in the weak disorder limit & — oo
the two-particle localization length & will scale with &;
as & o £2U?%, where U is the interaction strength [4].
This result was further supported by Imry (Im95) in
[5], where a Thouless-type scaling argument was replac-
ing the banded random matrix analogy. Therefore, two
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interacting particles were predicted to explore a much
larger space than noninteracting particles. Numerical
calculations by Frahm et al (FR) [6] concluded that the
scaling is probably weaker, namely &, oc £}-9%, and raised
doubts about the previously assumed scaling properties
of overlap integrals. Using a Green function method
adapted to the problem [7], a new scaling relation at the
center of the band, & = &/2 + 0.074€2|U|/(1 + |U)),
was obtained numerically in [8]. In particular, this im-
plies that the enhancement effect will set in for weaker
interactions than previously predicted. Later on, it was
argued that the enhancement effect is probably due to
finite-size effects and it should completely vanish for
an infinite system [9]. Simulating the time dependent
Schrédinger equation for two interacting particles [10],
it was argued that the dynamics is characterized by two
time scales, t; and t2, set by, respectively, two local-
ization lenghts, & and &». Recently, two of us studied
statistical properties of the overlap integrals perturba-
tively and numerically for weak disorder [11]. These re-
sults contradict previous assumptions of Sh94 and Im95
[4, 5], and if used within the previously applied theoret-
ical schemes, predict a much weaker interaction induced
increase of the localization length than previously dis-
cussed. Despite a number of studies, the problem of
two interacting particles in a random potential remains
therefore a completely open problem. At the same time
this seemingly academic case can be both addressed by
current techniques with ultracold interacting atoms [12],
and is of fundamental importance for tackling the much
more complicated case of many interacting particles in
random potentials.

In the present work we first show that a nonper-
turbative strong localization length enhancement can be
expected only in a regime of very weak disorder, with
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upper bounds on the disorder strength. This regime was
not fully accessed in previous numerical scaling stud-
ies. We obtain upper bounds on the strength of the ex-
pected enhancement effect using correct scaling proper-
ties of overlap integrals. We then perform direct numer-
ical measurements solving the corresponding eigenvalue
problem and calculating the largest average localization
length &> of exponentially decaying two-particle proba-
bility density function averaged over many disorder real-
izations. Finally we formulate a set of open issues which
have to be addressed in the future.

2. Model. We consider the Bose-Hubbard hamil-
tonian with disorder

7'2 7{0 + 7"inta 7'lint =

U N
Z [Ea?‘aralal] (1)

l
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l

and use the fixed boundary conditions. The hamiltonian
(1) consists of non- 1nteract1ng and interacting parts, 7-[0
and ’Hmt, where al and qa; are standard boson cre-
ation and annihilation operators on a lattice site [ and
U measures the interaction strength. The random on-
site energies ¢ are chosen uniformly from the interval
[-W/2,W /2], with W and V denoting the disorder and
hopping strengths, respectively.

2.1. One particle. In this case the interaction term
does not contribute. We use the basis |I) = a;7|0) with
I =1,...,N (N is the number of lattice sites). The
eigenstates (also called single particle normal modes
(NM)) vy = va Al('/) |I) are defined through the eigen-
vectors Al('/) ~ e /& with the eigenvalue problem

AAY =AY + v (AW, + AM). 2)

I+1

The eigenvalues —2V —W/2 < XA < 2V +W/2 fill a band
with a width A; = 4V + W. The most extended NMs
correspond to the band center A = 0 with localization
length

& (A =0,W) ~ 100(V?/W?), (3)

in the limit of weak disorder W/V < 4 [2]. The av-
erage volume L which an eigenstate occupies has been
estimated to be about L ~ 3¢; for weak disorder [11].
2.2. Two particles. For U = 0 we construct ortho-
normalized two particle eigenstates as product states of
single particle eigenstates in a corresponding Fock space

[wv)

— 2 FHolu,v) =
0, olu, v)

A+ X)), v).
(4)

v > p) =
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Then, we expand the eigenstates |g) of the interacting
particle problem, H|g) = A4|g), in systems of eigenstates

ZII/V[I,<II ¢H 2 |,U,, >7

satisfy the eigenvalue problem

for the noninteracting problem, |¢) =

where the coefficients (;5,(3/)

AAD = Nuwof@) +20 Y I8 4l

p !

©w u’ (5)

Here A,, = A, + A, and therefore the noninteracting
case U = 0 yields a band with width A, = 2A;. The
coefficients I l’j,',”' are connected with the overlap integrals

Iy =N ArAy AL AY (6)
l

as follows: It”" = I%" [(\/T+ 8u/1+ 0ur). The
interacting case yields a single band for U < A, but
two bands separated by a gap for U > A,. Indeed, in
the latter case two-particle bound states are renormal-
ized out of the main band, and are mainly consisting of
two particles occupying the same site [13]. Therefore,
remaining band is due to states where the two parti-
cles can be anywhere but not on the same site. This
is simply the limit of two noninteracting spinless fermi-
ons. The localization length of these two noninteracting
fermions is of the same order as the single particle local-
ization length. The localization length in the bound state
band is even smaller, since the effective disorder strength
in this band becomes 2W, but the effective hopping is
strongly suppressed.

For numerical purposes we expand the two
particle eigenstates |g) in the local basis |¢) =

= o e L3O |1,m), Fa10)/ (VIT bim),

where El(flm = (I, m|q) are the normalized eigenvectors.
They satisfy

I,m) = a

N (p) (1) ()
Am A )+ A Ay
Pur = E

m,l<m

[’(11) . 7
\/1 + 6lm\/1 + 5;;1/ Lm ( )

We will numerically compute the probability density
function (PDF) of the number of particles in direct space
o = (q|a; d|q)/2, which is given by

N
1 2
=5 2L+ E:E"’ .®
k<K m,I>m

3. Different scales for the two-particle prob-
lem. Since a single particle eigenstate occupies a volume
L, there are of the order of L? two particle eigenstates
which are residing in the same volume for U = 0. The
overlap integrals built among these L?> Fock states are
nonzero (more precisely not exponentially weak) and
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define the connectivity in the Fock space for nonzero
U. The average eigenenergy spacing d of these con-
nected Fock states is d = A,/L?. It therefore defines
an effective energy mismatch, i.e. an effective disor-
der strength W = d, in the Fock space. The effec-
tive hopping strength follows from (5) and is given by
V = 2U(I). Here (I) is an average overlap integral
among all connected Fock states [11].

In analogy with Eq. (3) we can therefore obtain a
localization length in Fock space for weak Fock space
disorder W < 4V, which in real space is a measure in
units of the single particle localization length:

€ /& ~ 100V /W? = 400U*(I)2L* /A . (9)

For strong Fock space disorder W > V the volume
L =~ 1, and two interacting particles are localized in
the same way, therefore & ~ &; in this case.

3.1 Bounds on the weak Fock space disorder regime.
Let us now address the question whether we can enter
the weak Fock space disorder regime for strong single
particle disorder W > V. This seems possible at a first
glance since we can increase the value of V by increas-
ing U. However, in this limit (I} ~ V2 /W?2. Therefore
the needed interaction strength is U ~ W?3/V?2, since
As ~ W. But an increase of the interaction strength
beyond the band width A, leads to the separation of the
energy spectrum into two bands - a bound state band
with strongly localized particle pairs [13], and a nonin-
teracting spinless fermion band which has no localization
length increase as compared to the single particle case.
The two conditions U < W and U > W?/V? imply that
W <V is needed, which means that the single particle
case must be in the regime of weak localization. There-
fore U < V is an upper bound for entering the weak
Fock space disorder regime.

Lowering U further we will however again leave this
regime and enter the perturbative one, which is again
characterized by strong disorder in Fock space. Indeed,
the energy renormalization of a given Fock state follows
from (5) and is given by 2U Iy, where Iy is an average
overlap integral of a Fock state with itself. Due to ortho-
normality of the single particle eigenfunctions it follows
Iy =~ 1/L. The perturbative regime holds as long as
U, < d. Inside the perturbative regime a Fock state is
still a good approximation to an exact eigenstate, and
therefore the two particle localization length is of the
order of the single particle one. Therefore, the nonper-
turbative weak Fock space disorder regime is accessed
for Ay /LSU S V.

For any practical purposes we seek a strong enough
interaction strength U, and this requires U ~ V and
W < V. In order to obtain any relevant scaling results

upon variation of W one needs therefore to lower W
significantly further such that W <« V.

3.2 Overlap integrals revisited. Sh94 and Im95 esti-
mated the average overlap integral (I)s; ~ L~3/2 [4, 5]
inside the weak Fock space disorder regime. This re-
sult is obtained in the following way. A single particle
eigenstate occupies a volume L >> 1. Due to normaliza-
tion it follows |Al(")| ~ L~'/2, The crucial point was to
assume that all terms inside one localization volume in
the sum (6) have uncorrelated signs. This leads to the
above estimate. However, in the limit of weak disorder
and large localization length, the single particle eigen-
vectors inside a localization volume will appear similar
to plane waves, with appreciable phase correlations be-
tween different sites, and also between different eigen-
states. Some numerical studies by Romer et al. (R99)
[14] even concluded that (I)g ~ L~ 2. This result es-
sentially corresponds to the assumption that the eigen-
vectors are exact plane wave states inside a localization
volume. It is this small difference in the exponent which
separates a possible existing strong enhancement of the
localization length from no effect at all.

In a recent work two of us performed a perturba-
tion approach at the weak disorder limit and obtained
that strong phase correlations will certainly modify the
prediction of Sh94, Im95. At the same time corrections
to the result of R99 are significant. As a final result
we obtain (I)s; ~ —In (L)L=2 [11] - logarithmic correc-
tions to the prediction of Romer et al. It is well-known
that logarithmic corrections are rather resistent to nu-
merical verifications, if no special trick or technique is
used. Therefore, our numerical tests in a limited inter-
val of W lead only to the clear result that the prediction
of Sh94, Im95 is incorrect, and if (I) ~ 1/L? is as-
sumed, then z ~ 1.7. They were not sensitive to distin-
guish between this power law and a possible asymptotic
(I' ~ —In (L)L 2 logarithmic law.

3.3. Scaling of the localization length. Combining
the above predictions on the overlap integral scaling and
the localization length scaling (9) we arrive at the fol-
lowing results in the weak Fock space disorder regime.
Here we set A, = 8V, take W < 4V such that (3)
holds. Then Sh94 and Im95 predict & /& ~ (U/V)2&
as derived using different methods in the original pa-
pers [4, 5]. According to R99 the whole effect is simply
& /& ~ (U/V)?, i.e. no enhancement at all. Finally,
our analytical estimate for the overlap integrals yields

&/&6 ~ (In&)* (U/V)°. (10)

Note that the numerically estimated overlap integral de-
pendence on L results in & /& ~ (U/V)2€0-6.
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4. Numerical technique. We estimate the largest
average localization length &, of the probability density
function p; ~ e~2/¢2 [see Eq. (8)] using the following
procedure (the prefactor 2 in the exponent takes care
of the fact that densitites instead of wave functions are
fitted). For a given realization we solve the eigenvalue
problem and choose only those modes El(?% which satisfy
to the following selection rules:

e the center of masses

N N
Lo 3 I m— > meE )
m,I<m m,I<m

satisfy to the inequalities |I, — N/2| < &, |mg —
— N/2| < & (€ is of the order of the correspond-
ing average localization length for a single particle
problem). Thus, we take into account only those
modes for which the two particles reside in the
same localization volume;

o the eigenvalues are near the bandwidth center. We
assume that similar to the case of a single particle
problem the most extended modes are with A, ~ 0;

e we project El(?% onto the modes of the one-particle
problem, calculate the amplitudes ¢,, in accor-
dance with Eq. (7) and find the mode |uo,vo)
with the largest amplitude, max,, ., ¢7,. Such a
method allows us to identify the Fock state |uo, o)
which dominates all others. We then request that
the eigenvalues A,, and A, are close to the band-
width center. Thus, we exclude possible cases
when ), is close to the band center, but A,, and
Ay, are located at the two opposite band edges.

Having selected the modes Ll(?%, we compute their prob-

ability density functions p; according to Eq. (8) and
shift them such that their new center of mass are lo-
cated at the center of a chain, N/2. Then, we com-
pute logarithms of the PDFs, In(p;) and perform a sta-
tistical average of the PDFs over many disorder real-
izations as (p;) = exp[(ln(p;))]. Finally, using a lo-
cal regression smoothing technique, we obtain smooth
functional dependencies of (p;) and calculate the quan-
tity a = 2|d(In{p;))/dl|~ . In the limit of large I, a(l)
should saturate at the average two particle localization
length &.

5. Numerical results. The dimension of the
Hilbert space p grows rapidly (~ N?) with the size of
a chain, so that the maximal reachable size used in nu-
merical computations, Nyax = 234. Thus, we inevitably
face finite size effects for weak disorder. We start with
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Fig.1. (a) — Smoothed average probability distribution
function (p;) versus lattice site [ in lin-log scale for W = 2,
U =0 ((g), green curve) and W =2, U = 0.2 [(0), orange
curve]. (b) — The corresponding quantity « (see text) ver-
sus [, with a zoom of the interval with saturated values
of a (inset). (c) — The two-particle localization length &
versus W for the noninteracting case, U = 0 (red circles).
Blue solid line: &; = 100/W2. Dashed lines: maximal ad-
missible error of 10% from the analytical formula. Gray
area corresponds to the admissible values

the noninteracting case U = 0 for which & must be ex-
actly equal to &;. We estimate the minimal value for the
strength of disorder, respectively, maximal localization
length, &>, at which an error (caused by finite-size ef-
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fects) is less than 10% (which is the maximal error we
admit). We assume that this error depends only on the
magnitude of & but not on the interaction strength U.
Thus, the largest tolerable values for & found for the
noninteracting case are also assumed to be the limit-
ing values for the interacting case. For U = 0 the lower
curve in Fig. 1a presents a smooth dependence of (p;) on
I. The corresponding quantity « (lower curve in Fig. 1b)
saturates at large distances. The obtained localization
length &, is finally shown in Fig. 1c and agrees well with
the theoretical prediction, however systematic deviations
accumulate for weak disorder. A recalculation of the
same quantities for U = 0.2 in Fig.1a,b shows that the
method appears to be applicable to the interacting case
as well. Finite size effects blurr our results substantially
if & > 40.

Let us discuss our results for nonzero interaction.
The ratio &>/& grows with increasing interaction con-
stant U, as shown for different values of W in Fig. 2.
This growth is stronger, the weaker the disorder strength

Fig. 2. The ratio £»2/£;1 versus interaction constant U for
different values of disorder W = 2,2.5,3,4 (from top to
bottom)

is. For our data, the ratio did not substantially ex-
ceed the value 2. However, it seems plausible that for
W < 2 (which is not treatable with our current tech-
nique), stronger enhancement effects could be observed.

The central result is plotted in Fig.3. Here we plot
& versus & on log-log scales. We try to fit data for a
fixed value of U and different values of W using power
law estimates. Both & and & vary less than an order of
magnitude, while a safe power law fit needs at least two
orders of magnitude variations on each variable. Never-
theless we bound the obtained variations with two lines

60

&

10~

40

Fig.3. The two-particle localization length £» versus one
particle localization length &; for U = 1.5,1.0,0.5,0.2
(from top to bottom) in log-log scale. Dashed straight
lines are power laws £ with the exponents a = 1.4 (up-
per line) and a = 1.3 (lower line). The size of a chain is
N =234

& ~ €3 and & ~ €% Such a scaling is much weaker
than the any of the above predicted power laws. It is
possible that we observe the onset of the logarithmic
scaling obtained from perturbation theory (10).

Let us compare our benchmark results (obtained
from exact diagonalization, without any finite size fit-
ting, and with a maximum error of 10%) with the re-
sults using a Green function (GF) approach [7, 8]. This
method is not exact. First, it measures the decay of
the two particle wavefunction along the diagonal (cf.
Fig.4), instead of the PDF used here. As a conse-
quence, at U = 0 GF-measures a length Ly = & /2.
Indeed, at U = 0 the wave function is more elongated
along the main axes and compressed along the diago-
nal (cf. Fig.4). However, at nonzero U and sufficiently
weak disorder, the wavefunction elongates along the di-
agonal (cf. Fig.4). Therefore, in this limit one ex-
pects that Lo — &. This nontrivial crossover feature
adds to and blurres any straightforward fitting proce-
dure. Second, the GF-suffers from finite size effects,
and the actual data for L, are obtained from a finite
size fit [8]. We tested the quality of such fits in our cal-
culations, and dropped this method since it is way too
incorrect in order to extract scaling features. To give
an example, we take U = 1 and find in our benchmark
stady &(W = 3) = 164+ 2, &(W = 2.5) = 27+ 2,
and & (W = 2) = 51 + 4. The corresponding numbers
from [8] area Lo(W = 3) = 12.5, Lo(W = 2.5) = 20,
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Fig. 4. log(|ci,m|?) versus I and m averaged over time and 5000 disorder realizations. For better visualization results are
unfolded from the irreducible triangle shaped state space onto a square with ¢;,;m, = ¢, for m < 1. The strength of disorder
W = 2.5 and the interaction constants U = 0 (a) and U = 2 (b). Particles are initially located on the same site at the center

of a chain with N = 170 sites

L, (W = 2) = 41. Therefore even at disorder W = 2 and
U = 1 the GF-numbers are suffering from the abovemen-
tioned crossover. What is left in the GF-analysis [8] is
a little window 1 < W < 1.75. Such a small window is
not enough in order to extract meaningful scaling data.

5.1. Averaged evolution of two particles. In or-
der to visualize the effect of interaction on the local-
ization of two particles, we solve the time dependent
Schrodinger equation id;|¥(¢)) = H|¥(t)). We expand
|¥(t)) in terms of the orthonormal states |I,m) (I < m)
as |¥(t)) = Eg,Km c1,m (t)|I, m), where the coefficients
El(,qu are c;m(t) = Db 4 goqﬁl(?rzbe*“qt. Here ¢, are
the amplitudes of NMs related with the initial ampli-
tudes ¢;,m (0) = (I, m|¥(0)) of the two-particle states as
pq = Zme cl,m(O)Ll(?TZL. We launch two particles on
the same site, lo = mo, or adjacent sites, lp = mo — 1,
such that the initial amplitude ¢,y (0) = 01,150m,mo- We
calculate then the averaged in time square amplitude
(|et,m|?)¢, which is given by

T
2y, = i fO |Cl,m|2d _ . 2£(11)2 12
(leml®)e = Jim 22 dt = gL (12)
g=1

We further average (|c;m|*): over 5000 disorder real-
izations. In addition we perform an averaging with
respect to initial conditions, by keeping the same dis-
order potential, and taking different neighboring sites
Mucema B AROT® Tom 94
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as an initial location of the particles. Finally, we com-
pute the average probability density function (p;) using

P = % (Eﬁlgk lew |2 + Zﬁ,lZm |cml|2). Note that the
averaged in time two-particle wavefunction |c;p,|? for a
single disorder realization has many spots at different lo-
cations due to resonances. This feature is smeared out,
once the averaging with respect to disorder realizations
is performed as is seen in Fig.4a,b. For the noninteract-
ing case the obtained distribution is elongated along the
main axes. This happens because the two particles are
not correlated, and it is much more probable for them
to occupy different space regions. However for U = 2
the distribution is elongated along the diagonal. This
implies that the two particles are exploring more states
when being close to each other.

6. Summary. In summary, we discussed the pos-
sible regimes of two interacting particles in a random
potential. The most interesting case of a weak Fock
space disorder regime was analyzed, and scaling laws
were discussed. These results, as well as the numer-
ical data presented as well, show that the localization
length enhancement effect is much weaker than previ-
ously assumed. Further numerical studies are needed in
order to substantiate these results. However the current
techniques are not of use for weaker disorder strength.
Therefore new computational approaches are needed in



444

D. O. Krimer, R. Khomeriki, S. Flach

order to reach disorder values as low as W = 0.1, which
may be enough to test the predicted weak logarithmic
scaling.

The authors wish to thank I. Aleiner and B.L. Alt-

shuler for insightful discussions.
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