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 2011 September 10Two interacting particles in a random potentialD.O.Krimerr�1), R.Khomerikir�, S. FlachrrMax Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany� Theoretische Physik, Universit�at T�ubingen, 72076 T�ubingen, Germany�Physics Department, Tbilisi State University, 0128 Tbilisi, GeorgiaSubmitted 14 June 2011Resubmitted 11 July 2011We study the scaling of the localization length of two interacting bosons in a one-dimensional random latticewith the single particle localization length. We consider the short-range interaction assuming that the particlesinteract when located both on the same site. We discuss several regimes, among them one interesting weakFock space disorder regime. In this regime we obtain a weak logarithmic scaling law. Numerical benchmarkdata support the absence of any strong enhancement of the two particle localization length.1. Introduction. Quantum single particle dynam-ics in one-dimensional disordered lattices with uncorre-lated random onsite energies exhibits Anderson localiza-tion [1]. The asymptotic spatial decay of an eigenvectoris exponential and given by A(�)l � e�l=��1 , where ��1 isthe localization length of an eigenmode � with the eigen-value �� , and the integer l counts the lattice site (see alsoe.g. [2]). The localization length is bounded from above.In [3] Dorokhov studied one-dimensional continu-ous model with harmonic attraction between two par-ticles placed in weak random potential. It was shownthat defects induce transitions between the internal-quantization states leading to the possible increase ofthe two-particle localization length which is a measurefor coherent propagation of two interacting particles.The interplay of disorder and interaction of two in-teracting particles (TIP), interacting in a random one-dimensional chain was later considered by Shepelyansky(Sh94) [4]. The conclusion was that two particles mightpropagate coherently over distances �2 much larger thanthe single particle localization length �1, if both par-ticles are launched within a distance of �1 from eachother. Sh94 used an analogy between the two-particleeigenvalue problem and that of banded randommatrices,and made an assumption about the scaling properties ofoverlap integrals which connect di�erent noninteractingFock eigenstates in the presence of interaction. He �-nally concluded that in the weak disorder limit �1 !1the two-particle localization length �2 will scale with �1as �2 _ �21U2, where U is the interaction strength [4].This result was further supported by Imry (Im95) in[5], where a Thouless-type scaling argument was replac-ing the banded random matrix analogy. Therefore, two1)e-mail: dmitry.krimer@gmail.com

interacting particles were predicted to explore a muchlarger space than noninteracting particles. Numericalcalculations by Frahm et al (FR) [6] concluded that thescaling is probably weaker, namely �2 _ �1:651 , and raiseddoubts about the previously assumed scaling propertiesof overlap integrals. Using a Green function methodadapted to the problem [7], a new scaling relation at thecenter of the band, �2 = �1=2 + 0:074�21jU j=(1 + jU j),was obtained numerically in [8]. In particular, this im-plies that the enhancement e�ect will set in for weakerinteractions than previously predicted. Later on, it wasargued that the enhancement e�ect is probably due to�nite-size e�ects and it should completely vanish foran in�nite system [9]. Simulating the time dependentSchr�odinger equation for two interacting particles [10],it was argued that the dynamics is characterized by twotime scales, t1 and t2, set by, respectively, two local-ization lenghts, �1 and �2. Recently, two of us studiedstatistical properties of the overlap integrals perturba-tively and numerically for weak disorder [11]. These re-sults contradict previous assumptions of Sh94 and Im95[4, 5], and if used within the previously applied theoret-ical schemes, predict a much weaker interaction inducedincrease of the localization length than previously dis-cussed. Despite a number of studies, the problem oftwo interacting particles in a random potential remainstherefore a completely open problem. At the same timethis seemingly academic case can be both addressed bycurrent techniques with ultracold interacting atoms [12],and is of fundamental importance for tackling the muchmore complicated case of many interacting particles inrandom potentials.In the present work we �rst show that a nonper-turbative strong localization length enhancement can beexpected only in a regime of very weak disorder, with438 �¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 5 { 6 2011



Two interacting particles in a random potential 439upper bounds on the disorder strength. This regime wasnot fully accessed in previous numerical scaling stud-ies. We obtain upper bounds on the strength of the ex-pected enhancement e�ect using correct scaling proper-ties of overlap integrals. We then perform direct numer-ical measurements solving the corresponding eigenvalueproblem and calculating the largest average localizationlength �2 of exponentially decaying two-particle proba-bility density function averaged over many disorder real-izations. Finally we formulate a set of open issues whichhave to be addressed in the future.2. Model. We consider the Bose{Hubbard hamil-tonian with disorderĤ � Ĥ0 + Ĥint; Ĥint =Xl �U2 â+l â+l âlâl� ; (1)Ĥ0 =Xl ��lâ+l âl + V (â+l+1âl + â+l âl+1)� ;and use the �xed boundary conditions. The hamiltonian(1) consists of non-interacting and interacting parts, Ĥ0and Ĥint, where â+l and âl are standard boson cre-ation and annihilation operators on a lattice site l andU measures the interaction strength. The random on-site energies �l are chosen uniformly from the interval[�W=2;W=2], with W and V denoting the disorder andhopping strengths, respectively.2.1. One particle. In this case the interaction termdoes not contribute. We use the basis jli � a+l j0i withl = 1; : : : ; N (N is the number of lattice sites). Theeigenstates (also called single particle normal modes(NM)) j�i =PNl A(�)l jli are de�ned through the eigen-vectors A(�)l � e�jlj=��1 with the eigenvalue problem��A(�)l = �lA(�)l + V (A(�)l+1 +A(�)l�1): (2)The eigenvalues �2V �W=2 � � � 2V +W=2 �ll a bandwith a width �1 = 4V +W . The most extended NMscorrespond to the band center � = 0 with localizationlength �1(� = 0;W ) � 100(V 2=W 2); (3)in the limit of weak disorder W=V � 4 [2]. The av-erage volume L which an eigenstate occupies has beenestimated to be about L � 3�1 for weak disorder [11].2.2. Two particles. For U = 0 we construct ortho-normalized two particle eigenstates as product states ofsingle particle eigenstates in a corresponding Fock spacej�; � � �i = j�ij�ip1 + ��;� ; Ĥ0j�; �i = (�� + ��)j�; �i:(4)

Then, we expand the eigenstates jqi of the interactingparticle problem, Ĥjqi = �q jqi, in systems of eigenstatesfor the noninteracting problem, jqi =PN�;��� �(q)�� j�; �i,where the coe�cients �(q)�� satisfy the eigenvalue problem�q�(q)�� = ����(q)�� + 2U X�0;�0 �I�0�0�� �(q)�0�0 : (5)Here ��� � �� + �� and therefore the noninteractingcase U = 0 yields a band with width �2 = 2�1. Thecoe�cients �I�0�0�� are connected with the overlap integralsI�0�0�� =Xl A�l A�l A�0l A�0l (6)as follows: �I�0�0�� = I�0�0�� =(p1 + ���p1 + ��0�0). Theinteracting case yields a single band for U < �2, buttwo bands separated by a gap for U > �2. Indeed, inthe latter case two-particle bound states are renormal-ized out of the main band, and are mainly consisting oftwo particles occupying the same site [13]. Therefore,remaining band is due to states where the two parti-cles can be anywhere but not on the same site. Thisis simply the limit of two noninteracting spinless fermi-ons. The localization length of these two noninteractingfermions is of the same order as the single particle local-ization length. The localization length in the bound stateband is even smaller, since the e�ective disorder strengthin this band becomes 2W , but the e�ective hopping isstrongly suppressed.For numerical purposes we expand the twoparticle eigenstates jqi in the local basis jqi == PNm;l�mL(q)l;mjl;mi; jl;mi � a+l a+mj0i=(p1 + �lm),where L(q)l;m = hl;mjqi are the normalized eigenvectors.They satisfy��� = NXm;l�m A(�)m A(�)l +A(�)l A(�)mp1 + �lmp1 + ��� L(q)l;m: (7)We will numerically compute the probability densityfunction (PDF) of the number of particles in direct spacepl = hqjâ+l âljqi=2, which is given byp(q)l = 12 0@ NXk;l�kL(q)2l;k + NXm;l�mL(q)2m;l 1A : (8)3. Di�erent scales for the two-particle prob-lem. Since a single particle eigenstate occupies a volumeL, there are of the order of L2 two particle eigenstateswhich are residing in the same volume for U = 0. Theoverlap integrals built among these L2 Fock states arenonzero (more precisely not exponentially weak) and�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 5 { 6 2011



440 D.O.Krimer, R.Khomeriki, S. Flachde�ne the connectivity in the Fock space for nonzeroU . The average eigenenergy spacing d of these con-nected Fock states is d = �2=L2. It therefore de�nesan e�ective energy mismatch, i.e. an e�ective disor-der strength �W � d, in the Fock space. The e�ec-tive hopping strength follows from (5) and is given by�V = 2UhIi. Here hIi is an average overlap integralamong all connected Fock states [11].In analogy with Eq. (3) we can therefore obtain alocalization length in Fock space for weak Fock spacedisorder �W . 4 �V , which in real space is a measure inunits of the single particle localization length:�2=�1 � 100 �V 2= �W 2 = 400U2hIi2L4=�22 : (9)For strong Fock space disorder �W � �V the volumeL � 1, and two interacting particles are localized inthe same way, therefore �2 � �1 in this case.3.1 Bounds on the weak Fock space disorder regime.Let us now address the question whether we can enterthe weak Fock space disorder regime for strong singleparticle disorder W � V . This seems possible at a �rstglance since we can increase the value of �V by increas-ing U . However, in this limit hIi � V 2=W 2. Thereforethe needed interaction strength is U � W 3=V 2, since�2 � W . But an increase of the interaction strengthbeyond the band width �2 leads to the separation of theenergy spectrum into two bands - a bound state bandwith strongly localized particle pairs [13], and a nonin-teracting spinless fermion band which has no localizationlength increase as compared to the single particle case.The two conditions U .W and U &W 3=V 2 imply thatW . V is needed, which means that the single particlecase must be in the regime of weak localization. There-fore U . V is an upper bound for entering the weakFock space disorder regime.Lowering U further we will however again leave thisregime and enter the perturbative one, which is againcharacterized by strong disorder in Fock space. Indeed,the energy renormalization of a given Fock state followsfrom (5) and is given by 2UI0, where I0 is an averageoverlap integral of a Fock state with itself. Due to ortho-normality of the single particle eigenfunctions it followsI0 � 1=L. The perturbative regime holds as long asUI0 . d. Inside the perturbative regime a Fock state isstill a good approximation to an exact eigenstate, andtherefore the two particle localization length is of theorder of the single particle one. Therefore, the nonper-turbative weak Fock space disorder regime is accessedfor �2=L . U . V .For any practical purposes we seek a strong enoughinteraction strength U , and this requires U � V andW < V . In order to obtain any relevant scaling results

upon variation of W one needs therefore to lower Wsigni�cantly further such that W � V .3.2 Overlap integrals revisited. Sh94 and Im95 esti-mated the average overlap integral hIiSI � L�3=2 [4, 5]inside the weak Fock space disorder regime. This re-sult is obtained in the following way. A single particleeigenstate occupies a volume L� 1. Due to normaliza-tion it follows jA(�)l j � L�1=2. The crucial point was toassume that all terms inside one localization volume inthe sum (6) have uncorrelated signs. This leads to theabove estimate. However, in the limit of weak disorderand large localization length, the single particle eigen-vectors inside a localization volume will appear similarto plane waves, with appreciable phase correlations be-tween di�erent sites, and also between di�erent eigen-states. Some numerical studies by R�omer et al. (R99)[14] even concluded that hIiR � L�2. This result es-sentially corresponds to the assumption that the eigen-vectors are exact plane wave states inside a localizationvolume. It is this small di�erence in the exponent whichseparates a possible existing strong enhancement of thelocalization length from no e�ect at all.In a recent work two of us performed a perturba-tion approach at the weak disorder limit and obtainedthat strong phase correlations will certainly modify theprediction of Sh94, Im95. At the same time correctionsto the result of R99 are signi�cant. As a �nal resultwe obtain hIiSI � � ln (L)L�2 [11] { logarithmic correc-tions to the prediction of R�omer et al. It is well-knownthat logarithmic corrections are rather resistent to nu-merical veri�cations, if no special trick or technique isused. Therefore, our numerical tests in a limited inter-val of W lead only to the clear result that the predictionof Sh94, Im95 is incorrect, and if hIi � 1=Lz is as-sumed, then z � 1:7. They were not sensitive to distin-guish between this power law and a possible asymptotichIi � � ln (L)L�2 logarithmic law.3.3. Scaling of the localization length. Combiningthe above predictions on the overlap integral scaling andthe localization length scaling (9) we arrive at the fol-lowing results in the weak Fock space disorder regime.Here we set �2 = 8V , take W < 4V such that (3)holds. Then Sh94 and Im95 predict �2=�1 � (U=V )2�1as derived using di�erent methods in the original pa-pers [4, 5]. According to R99 the whole e�ect is simply�2=�1 � (U=V )2, i.e. no enhancement at all. Finally,our analytical estimate for the overlap integrals yields�2=�1 � (ln �1)2 (U=V )2 : (10)Note that the numerically estimated overlap integral de-pendence on L results in �2=�1 � (U=V )2�0:61 .�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 5 { 6 2011



Two interacting particles in a random potential 4414. Numerical technique. We estimate the largestaverage localization length �2 of the probability densityfunction pl � e�2l=�2 [see Eq. (8)] using the followingprocedure (the prefactor 2 in the exponent takes careof the fact that densitites instead of wave functions are�tted). For a given realization we solve the eigenvalueproblem and choose only those modes L(q)l;m which satisfyto the following selection rules:� the center of masses�lq = NXm;l�m lL(q)2l;m ; �mq = NXm;l�mmL(q)2l;m (11)satisfy to the inequalities j�lq �N=2j � �1; j �mq ��N=2j � �1 (� is of the order of the correspond-ing average localization length for a single particleproblem). Thus, we take into account only thosemodes for which the two particles reside in thesame localization volume;� the eigenvalues are near the bandwidth center. Weassume that similar to the case of a single particleproblem the most extended modes are with �q � 0;� we project L(q)l;m onto the modes of the one-particleproblem, calculate the amplitudes ��� in accor-dance with Eq. (7) and �nd the mode j�0; �0iwith the largest amplitude, max�0;�0 �2�� . Such amethod allows us to identify the Fock state j�0; �0iwhich dominates all others. We then request thatthe eigenvalues ��0 and ��0 are close to the band-width center. Thus, we exclude possible caseswhen �q is close to the band center, but ��0 and��0 are located at the two opposite band edges.Having selected the modes L(q)l;m, we compute their prob-ability density functions pl according to Eq. (8) andshift them such that their new center of mass are lo-cated at the center of a chain, N=2. Then, we com-pute logarithms of the PDFs, ln(pl) and perform a sta-tistical average of the PDFs over many disorder real-izations as hpli = exp[hln(pl)i]. Finally, using a lo-cal regression smoothing technique, we obtain smoothfunctional dependencies of hpli and calculate the quan-tity � = 2jd(lnhpli)=dlj�1. In the limit of large l, �(l)should saturate at the average two particle localizationlength �2.5. Numerical results. The dimension of theHilbert space p grows rapidly (� N2) with the size ofa chain, so that the maximal reachable size used in nu-merical computations, Nmax = 234. Thus, we inevitablyface �nite size e�ects for weak disorder. We start with
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Fig. 1. (a) { Smoothed average probability distributionfunction hpli versus lattice site l in lin-log scale for W = 2,U = 0 ((g), green curve) and W = 2, U = 0:2 [(o), orangecurve]. (b) { The corresponding quantity � (see text) ver-sus l, with a zoom of the interval with saturated valuesof � (inset). (c) { The two-particle localization length �2versus W for the noninteracting case, U = 0 (red circles).Blue solid line: �1 = 100=W 2. Dashed lines: maximal ad-missible error of 10% from the analytical formula. Grayarea corresponds to the admissible valuesthe noninteracting case U = 0 for which �2 must be ex-actly equal to �1. We estimate the minimal value for thestrength of disorder, respectively, maximal localizationlength, �2, at which an error (caused by �nite-size ef-�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 5 { 6 2011



442 D.O.Krimer, R.Khomeriki, S. Flachfects) is less than 10% (which is the maximal error weadmit). We assume that this error depends only on themagnitude of �2 but not on the interaction strength U .Thus, the largest tolerable values for �2 found for thenoninteracting case are also assumed to be the limit-ing values for the interacting case. For U = 0 the lowercurve in Fig. 1a presents a smooth dependence of hpli onl. The corresponding quantity � (lower curve in Fig. 1b)saturates at large distances. The obtained localizationlength �2 is �nally shown in Fig. 1c and agrees well withthe theoretical prediction, however systematic deviationsaccumulate for weak disorder. A recalculation of thesame quantities for U = 0:2 in Fig. 1a, b shows that themethod appears to be applicable to the interacting caseas well. Finite size e�ects blurr our results substantiallyif �2 > 40.Let us discuss our results for nonzero interaction.The ratio �2=�1 grows with increasing interaction con-stant U , as shown for di�erent values of W in Fig. 2.This growth is stronger, the weaker the disorder strength
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Fig. 2. The ratio �2=�1 versus interaction constant U fordi�erent values of disorder W = 2; 2:5; 3; 4 (from top tobottom)is. For our data, the ratio did not substantially ex-ceed the value 2. However, it seems plausible that forW < 2 (which is not treatable with our current tech-nique), stronger enhancement e�ects could be observed.The central result is plotted in Fig. 3. Here we plot�2 versus �1 on log-log scales. We try to �t data for a�xed value of U and di�erent values of W using powerlaw estimates. Both �1 and �2 vary less than an order ofmagnitude, while a safe power law �t needs at least twoorders of magnitude variations on each variable. Never-theless we bound the obtained variations with two lines
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Two interacting particles in a random potential 443
100

80

80 100

m

l

100

80

80 100

m

l

−3.0 −2.5 −2.0 −1.5Fig. 4. log(jcl;mj2) versus l and m averaged over time and 5000 disorder realizations. For better visualization results areunfolded from the irreducible triangle shaped state space onto a square with cl;m = cm;l for m � l. The strength of disorderW = 2:5 and the interaction constants U = 0 (a) and U = 2 (b). Particles are initially located on the same site at the centerof a chain with N = 170 sitesL2(W = 2) = 41. Therefore even at disorderW = 2 andU = 1 the GF-numbers are su�ering from the abovemen-tioned crossover. What is left in the GF-analysis [8] isa little window 1 < W < 1:75. Such a small window isnot enough in order to extract meaningful scaling data.5.1. Averaged evolution of two particles. In or-der to visualize the e�ect of interaction on the local-ization of two particles, we solve the time dependentSchr�odinger equation i@tj	(t)i = Ĥj	(t)i. We expandj	(t)i in terms of the orthonormal states jl;mi (l � m)as j	(t)i =PNm;l�m cl;m(t)jl;mi, where the coe�cientsL(q)l;m are cl;m(t) = Ppq=1 'qL(q)l;me�i�qt. Here 'q arethe amplitudes of NMs related with the initial ampli-tudes cl;m(0) = hl;mj	(0)i of the two-particle states as'q = PNm;l�m cl;m(0)L(q)l;m. We launch two particles onthe same site, l0 = m0, or adjacent sites, l0 = m0 � 1,such that the initial amplitude cl;m(0) = �l;l0�m;m0 . Wecalculate then the averaged in time square amplitudehjcl;mj2it, which is given byhjcl;mj2it � limT!1 R T0 jcl;mj2T dt = pXq=1 j'q j2L(q)2l;m : (12)We further average hjcl;mj2it over 5000 disorder real-izations. In addition we perform an averaging withrespect to initial conditions, by keeping the same dis-order potential, and taking di�erent neighboring sites

as an initial location of the particles. Finally, we com-pute the average probability density function hpli usingpl = 12 �PNk;l�k jclkj2 +PNm;l�m jcmlj2�. Note that theaveraged in time two-particle wavefunction jclmj2 for asingle disorder realization has many spots at di�erent lo-cations due to resonances. This feature is smeared out,once the averaging with respect to disorder realizationsis performed as is seen in Fig. 4a, b. For the noninteract-ing case the obtained distribution is elongated along themain axes. This happens because the two particles arenot correlated, and it is much more probable for themto occupy di�erent space regions. However for U = 2the distribution is elongated along the diagonal. Thisimplies that the two particles are exploring more stateswhen being close to each other.6. Summary. In summary, we discussed the pos-sible regimes of two interacting particles in a randompotential. The most interesting case of a weak Fockspace disorder regime was analyzed, and scaling lawswere discussed. These results, as well as the numer-ical data presented as well, show that the localizationlength enhancement e�ect is much weaker than previ-ously assumed. Further numerical studies are needed inorder to substantiate these results. However the currenttechniques are not of use for weaker disorder strength.Therefore new computational approaches are needed in�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 5 { 6 2011
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