Влияние высокого давления на кристаллическую, магнитную структуру и спектры рамановского рассеяния света манганита $\Pr_{0.7} Ba_{0.3} MnO_3$

Д. П. Козленко⁺, Т. А. Чан^{+*}, А. В. Труханов[×], С. Е. Кичанов⁺, С. В. Труханов[×], Л. С. Дубровинский^{\circ 1}</sub>, Б. Н. Савенко⁺

+ Объединенный институт ядерных исследований, 141980 Дубна, Россия

* Тульский государственный университет, 300600 Тула, Россия

[×] НПЦ НАН Беларуси по материаловедению, 220072 Минск, Республика Беларусь

^oBayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany

Поступила в редакцию 17 августа 2011 г. После переработки 30 августа 2011 г.

Проведено исследование кристаллической, магнитной структуры и спектров рамановского рассеяния света манганита $Pr_{0.7}Ba_{0.3}MnO_3$ методами нейтронной дифракции в диапазоне давлений до 5 ГПа, рентгеновской дифракции и рамановской спектроскопии в диапазоне до 30 ГПа. Определены барические зависимости параметров и объема элементарной ячейки, межатомных связей Mn–O в орторомбической структуре симметрии *Imma*, а также частот изгибающих и растягивающих колебательных мод кислородных октаэдров. При давлении P = 1.9 ГПа в области низких температур обнаружен магнитный фазовый переход из исходного ферромагнитного (ΦM) основного состояния ($T_C = 197$ K) в антиферромагнитное ($A\Phi M$) состояние A-типа ($T_N = 153$ K). Фазы ΦM и $A\Phi M$ сосуществуют в диапазоне давлений до 5.1 ГПа и характеризуются отрицательным, $dT_C/dP = -2.3$ К/ГПа, и положительным, $dT_N/dP = 8$ К/ГПа, барическими коэффициентами температур Кюри и Нееля соответственно. Барическое поведение температуры Кюри в $Pr_{0.7}Ba_{0.3}MnO_3$ резко отличается от других манганитов близкого состава с орторомбической структурой симметрии Pnma и ромбоэдрической структурой симметрии $R\bar{3}c$, в которых ΦM -фаза характеризуется положительными значениями dT_C/dP . Обсуждаются структурные механизмы данных явлений.

1. Введение. Перовскитоподобные манганиты R_{1-x}A_xMnO₃ (R – редкоземельный, А – щелочноземельный элементы) проявляют большое разнообразие физических свойств в зависимости от порядкового номера и концентрации R и A элементов. Сильная корреляция магнитных, электронных и транспортных свойств манганитов вызывает их высокую чувствительность к изменению термодинамических параметров (температуры, давления) и внешним воздействиям (магнитному полю). Ярким примером является эффект колоссального магнетосопротивления, открывающий широкие перспективы их использования в устройствах хранения информации и датчиках магнитного поля [1]. Магнитные свойства манганитов определяются балансом двух конкурирующих взаимодействий: двойного обмена, связанного с выигрышем в кинетической энергии за счет переноса делокализованных (e_q) электронов в цепочках Mn³⁺-O²⁻-Mn⁴⁺ и способствующего ферромагнитному (ФМ) упорядочению магнитных моментов Mn, и антиферромагнитного (AФM) сверхобмена между магнитными моментами Mn, сформированными локализованными (t_{2g}) электронами [1, 2]. Двойной обмен является доминирующим взаимодействием в соединениях со сравнительно большими значениями среднего радиуса $\langle r_A \rangle$ катионов (R, A): $R_{1-x}Sr_xMnO_3$, $R_{1-x}Ba_xMnO_3$ (R = La, Pr, Nd), $La_{1-x}Ca_xMnO_3$. Оно приводит к их переходу из парамагнитного диэлектрического в ферромагнитное металлическое состояние в области концентраций 0.2 < x < 0.5. Максимальное значение температуры Кюри T_C , близкой к температуре перехода диэлектрик-металл T_{IM} , достигается при уровне допирования $x \sim 0.3-0.35$ и зависит от $\langle r_A \rangle$ [1, 2].

Недавние исследования показали, что воздействие высокого давления приводит к значительным изменениям физических свойств манганитов с оптимальным уровнем допирования, причем характер этих изменений сильно зависит от симметрии кристаллической структуры [3–7]. В соединениях La_{0.75} Ca_{0.25} MnO₃ и Pr_{0.7} Ca_{0.3} MnO₃ с орторомбической кристаллической структурой симметрии Pnma

¹⁾ L.S. Dubrovinsky.

при воздействии высокого давления ($P \sim 2 \Gamma \Pi a$) наблюдалось подавление исходного ФМ-состояния и появление нового АФМ-состояния А-типа [3, 4]. При этом ФМ- и АФМ-фазы сосуществуют друг с другом в диапазоне давлений до 5 ГПа, а температура Кюри демонстрирует аномальный рост с барическим коэффициентом 12 К/ГПа для La_{0.75}Ca_{0.25}MnO₃ [3]. В спектрах рамановского рассеяния света La_{0.75}Ca_{0.25}MnO₃ также была обнаружена аномальная барическая зависимость так называемой ян-теллеровской растягивающей фононной моды колебаний кислородных октаэдров с симметрией В₂ [6]. В то же время в соединении La_{0.7}Sr_{0.3}MnO₃ с ромбоэдрической кристаллической структурой симметрии $R\bar{3}c$ основное ферромагнитное состояние остается стабильным в диапазоне давлений до 8 ГПа, а температура Кюри возрастает со значительно меньшим барическим коэффициентом, 4 К/ГПа [7].

Предыдущие исследования оптимально допированных манганитов при воздействии высоких давлений были сконцентрированы на орторомбических соединениях симметрии Pnma, допускающей реализацию статического кооперативного эффекта Яна-Теллера и анизотропное сжатие кислородных октаэдров, и ромбоэдрических соединениях симметрии $R\bar{3}c$, особенностями которой являются изотропность кислородных октаэдров и отсутствие статического кооперативного эффекта Яна-Теллера. В то же время воздействие высокого давления на атомную, магнитную структуру и различные свойства орторомбических манганитов с промежуточным типом симметрии Imma ($R_{1-x}Ba_{x}MnO_{3}$) (R = La, Pr) [8, 9] остается малоизученным. Данный тип симметрии характеризуется отсутствием статического кооперативного эффекта Яна-Теллера, однако допускает реализацию анизотропного сжатия кислородных октаэдров. Настоящая работа посвящена исследованию влияния высокого давления на кристаллическую, магнитную структуру и спектры рамановского рассеяния света соединения $Pr_{0.7}Ba_{0.3}MnO_3$ методами нейтронной дифракции, рентгеновской дифракции и рамановской спектроскопии.

2. Описание эксперимента. Поликристаллические образцы $Pr_{0.7}Ba_{0.3}MnO_3$ были приготовлены стандартным методом твердофазной реакции аналогично процедуре, описанной в работе [8].

Эксперименты по рентгеновской дифракции в диапазоне давлений до $30\Gamma\Pi a$ при комнатной температуре проводились с помощью специального дифрактометра, состоящего из высокопоточного генератора рентгеновского излучения FRD (Мо-Каизлучение с $\lambda = 0.7115$ Å), фокусирующей опти-

ческой системы FluxMax и детектора Bruker APEX CCD. Образец помещался в камеру высокого давления с алмазными наковальнями [10] в рениевую гаскету с диаметром отверстия 150 мкм. Диаметр рабочей площадки наковален составлял 300 мкм. В качестве передающей давление среды использовалась смесь метанол-этанол в соотношении 4:1. Давление в камере измерялось по сдвигу линии люминесценции рубина с точностью 0.05 ГПа. Для оценки градиентов давления в различные области рабочего объема гаскеты помещались микрокристаллы рубина с размером около 7мкм. Величина градиента распределения давления на образце не превышала 15% в исследуемом диапазоне давлений. Для дополнительной калибровки давления к образцу добавлялось небольшое количество золота. Для конвертации двумерных дифракционных данных в одномерные дифракционные спектры использовалась программа FIT2D [11]. Анализ дифракционных данных проводился с помощью программы Fullprof [12]. Спектры рамановского рассеяния света измерялись на спектрометре LabRam (NeHe-лазер с длиной волны 632 нм, конфокальная щель 110 мкм, и × 50 объектив).

Эксперименты по нейтронной дифракции проводились на спектрометре ДН-12 [13] импульсного высокопоточного реактора ИБР-2 (ЛНФ им. И.М. Франка, ОИЯИ, Дубна) с использованием камер высокого давления с сапфировыми наковальнями [14] в диапазонах внешних высоких давлений 0-5 ГПа и температур 10-300 К. Дифракционные спектры измерялись при углах рассеяния $2 heta~=~90^\circ$ и 45.5°, для которых разрешение дифрактометра на длине волны λ = 2 Å составляло $\Delta d/d$ = 0.02 и 0.025 соответственно. Характерное время измерения одного спектра 20ч. Объем исследуемых образцов составлял $V \sim 2.5 \,{
m mm}^3$. Давление в камере измерялось по сдвигу линии люминесценции рубина с точностью 0.05 ГПа. Анализ дифракционных данных производился методом Ритвельда с помощью программ MRIA [15] (кристаллическая структура) и FullProf [12] (магнитная структура).

3. Полученные результаты и обсуждение. Рентгеновские дифракционные спектры $\Pr_{0.7} Ba_{0.3} MnO_3$, измеренные в диапазоне давлений до 30 ГПа при комнатной температуре (рис. 1), соответствуют орторомбической кристаллической структуре симметрии Imma [8]. Рассчитанные на основе анализа дифракционных данных по методу Ритвельда зависимости параметров элементарной ячейки от давления показаны на рис. 2. Коэффициенты линейной сжимаемости $k_i = -(1/a_{i0})(da_i/dP)_T$ составляют $k_a = 0.0008, k_b =$

Рис. 1. Участки рентгеновских дифракционных спектров Pr_{0.7}Ba_{0.3}MnO₃, полученных при различных давлениях и комнатной температуре. Показаны экспериментальные точки, рассчитанные профили, положения и индексы наиболее интенсивных рефлексов, а также дополнительных рефлексов от Re-гаскеты и Au

Рис. 2. Зависимости параметров Λ и объема V элементарной ячейки $\Pr_{0.7} Ba_{0.3} MnO_3$ от давления, интерполированные линейными функциями и уравнением Берча– Мурнагана (а). Зависимости длин λ связей Mn-O1, Mn-O2, среднего валентного угла Mn-O-Mn (вставка) от давления при комнатной температуре и их линейная интерполяция (b)

0.0014, $k_c = 0.0013 \Gamma \Pi a^{-1}$. Барическая зависимость объема элементарной ячейки (рис. 2) аппроксимировалась уравнением состояния Берча-Мурнагана [16]: $P = \frac{3}{2}B_0(x^{-7/3} - x^{-5/3})[1 + \frac{3}{4}(B' - 4)(x^{-2/3} - 1)],$ где $x = V/V_0$ - относительное изменение объема, V_0 -объем элементарной ячейки при P = 0,

Письма в ЖЭТФ том 94 вып. 7-8 2011

 $B_0 = -V(dP/dV)_T$ и $B' = (dB_0/dP)_T$ – модуль всестороннего сжатия и его производная по давлению. Полученные значения составили $B_0 = 144(5)$ ГПа, $B' = 4(1), V_0 = 240.8(7)$ Å³. Величина B_0 для $Pr_{0.7}Ba_{0.3}MnO_3$ несколько меньше по сравнению с аналогичными значениями для других манганитов близкого состава: La_{0.7}Sr_{0.3}MnO₃ (167 ГПа) [7] и La_{0.75}Ca_{0.25}MnO₃ (178 ГПа) [3].

Нейтронные дифракционные спектры Pr0.7 Ba0.3 MnO3, полученные при различных давлениях и температурах, представлены на рис.3. При нормальном давлении и температуре ниже T_C = 197К наблюдается увеличение интенсивности дифракционных пиков (200)/(002)/(121) и (101)/(020), расположенных на $d \sim 2.78$ и 3.91 Å, что указывает на формирование основного ферромагнитного состояния. Величина магнитного момента марганца составляет $\mu_{
m FM} = 3.6(1)\,\mu_{
m B}$ при $T = 10\,{
m K}$ в соответствии с данными работы [8]. В орторомбической структуре симметрии Ітта кислородные октаэдры содержат два типа неэквивалентных свяодну пару Mn-O1, ориентированную вдоль зей: кристаллографической оси b, и две пары Mn-O2 одинаковой длины, лежащие в плоскости (ac). С повышением давления происходит анизотропное сжатие кислородных октаэдров вдоль оси b, что проявляется в большем значении коэффициента линейной сжимаемости $k_i = -(1/l_{\mathrm{Mn-Oi}})(dl_{\mathrm{Mn-Oi}}/dP)_T$ (i = 1, 2) для связи Mn-O1 по сравнению со связью Мп-O2: $k_{\text{Mn-O1}} = 0.0035$ и $k_{\text{Mn-O2}} = 0.0019 \, \Gamma \Pi a^{-1}$ соответственно (рис. 2). Среднее значение валентного угла Mn–O–Mn ϕ уменьшается от 166.0° до 165.7° в диапазоне давлений 0-5.1 ГПа (рис. 2b, вставка).

При высоком давлении, $P = 1.9 \, \Gamma \Pi a$, в области температур ниже 190 К также наблюдался дополнительный вклад в интенсивность дифракционных пиков (200)/(002)/(121) и (101)/(020), соответствующий формированию ФМ-фазы. Кроме того, при температурах ниже $T_N = 153 \,\mathrm{K}$ обнаружено появление новых магнитных рефлексов (010) и (111) на $d \sim 7.50$ и 3.44 Å (рис. 3). Анализ экспериментальных данных показал, что они соответствуют появлению антиферромагнитной фазы с упорядочением А-типа [3], которая сосуществует с исходной ФМ-фазой. Магнитные моменты Mn в данной АФМ-структуре лежат в плоскостях (ac). Они ориентированы параллельно друг другу в пределах этих плоскостей и меняют направление на противоположное в соседних плоскостях, перпендикулярных оси b орторомбической структуры. Значения магнитных моментов при T = 10К для ФМ- и АФМ-фаз составляют $\mu_{
m FM}\,=\,3.2(1)\,\mu_{
m B}$ и $\mu_{\rm AFM} = 1.8(1)\,\mu_{\rm B}$ соответственно. С повышением

Рис. 3. Участки нейтронных дифракционных спектров $Pr_{0.7}$ $Ba_{0.3}$ MnO₃, измеренных при P = 0 и 5.1 ГПа, T = 295 и 10 К, углы рассеяния $2\theta = 90^{\circ}$ (a), $2\theta = 45.5^{\circ}$ (b), обработанные по методу Ритвельда. Показаны экспериментальные точки и вычисленный профиль. Вертикальными штрихами указаны рассчитанные положения структурных дифракционных пиков. Наиболее интенсивные АФМ-пики и пики с ФМ-вкладом помечены символами "AFM" и "FM" соответственно

Рис. 4. Температурные зависимости магнитных моментов марганца для ФМ- и АФМ-фаз при различных давлениях и их интерполяция, соответствующая описанию в тексте (a). Магнитная *P*-*T*-фазовая диаграмма Pr_{0.7}Ba_{0.3}MnO₃ (b)

давления до 5.1 ГПа величина $\mu_{\rm FM}$ уменьшается до 2.7(1) $\mu_{\rm B}$, а $\mu_{\rm AFM}$ увеличивается до 2.5(1) $\mu_{\rm B}$.

Температурные зависимости магнитных моментов в сосуществующих ФМ- и АФМ-фазах $\Pr_{0.7}Ba_{0.3}MnO_3$ и полученная магнитная P-T-фазовая диаграмма показаны на рис. 4. Для их интерполяции в АФМ-фазе использовалась функция $\mu_{AFM} = \mu_{AFM(0)} [1 - (T/T_N)^{\alpha}]^{\beta}$, а в ФМ-фазе – функ-

ция, описывающая поведение магнитного момента ферромагнетика в приближении молекулярного поля [17]:

$$rac{\mu_{\mathrm{FM}}}{\mu_{\mathrm{FM}(0)}} = B_S \left(rac{3S}{S+1} rac{\mu_{\mathrm{FM}}}{\mu_{\mathrm{FM}(0)}} rac{T_{\mathrm{C}}}{T}
ight),$$

где B_S – функция Бриллюэна, S – спин ионов Mn (S=3/2), $\mu_{{
m FM}(0)}$ – магнитный момент при T=0.

Письма в ЖЭТФ том 94 вып. 7-8 2011

Качественное различие температурных зависимостей магнитных моментов подтверждает предположение о сосуществовании объемных областей ФМ- и АФМ-фаз под давлением и позволяет исключить альтернативную модель скошенного АФМ-состояния. С повышением давления происходит уменьшение температуры Кюри от 197 (0 ГПа) до 185 (5.1 ГПа) К с барическим коэффициентом $dT_{
m C}/dP = -2.3\,{
m K}/{\Gamma}{
m Im}$ а. При этом температура Нееля увеличивается от 153 (1.9 ГПа) до 179 (5.1 ГПа) К с барическим коэффициентом $dT_{\rm N}/dP = 8 \, {\rm K}/{\Gamma} {\rm \Pi} {\rm a}$. Такое поведение резко контрастирует с другими близкими по составу манганитами, La_{0.7}Sr_{0.3}MnO₃, La_{0.75}Ca_{0.25}MnO₃, где при воздействии высокого давления наблюдается увеличение температуры Кюри со значительными барическими коэффициентами [3-7]. В рамках модели двойного обмена температура Кюри манганитов определяется шириной зоны носителей заряда W, которая зависит от средних значений межатомного угла Mn-O-Mn ф и длины связи Mn-O l как $T_{\rm C} \sim W \sim \cos^2 \phi/l^{3.5}$ [5]. Результаты настоящей работы показывают, что в Pr_{0.7}Ba_{0.3}MnO₃ под давлением происходит уменьшение значения угла ϕ (рис. 2b, вставка), в то время как в соединениях La_{0.7}Sr_{0.3}MnO₃, La_{0.75}Ca_{0.25}MnO₃ наблюдается его увеличение под давлением. При этом величина l уменьшается под давлением во всех данных соединениях. Следовательно, отрицательное значение барического коэффициента температуры Кюри в Pr0.7Ba0.3MnO3 может быть обусловлено уменьшением ширины зоны носителей заряда вследствие уменьшения среднего угла Mn-O-Mn. Температура Нееля в большей степени зависит от среднего значения длины связи Mn–O, $T_{\rm N} \sim l^{-14}$ [5], что обусловливает ее положительный барический коэффициент.

Возможной причиной наблюдаемого подавления исходного ФМ-состояния и стабилизации АФМ-состояния А-типа в $\Pr_{0.7}$ Ва_{0.3}MnO₃ является анизотропное сжатие кислородных октаэдров. Недавние теоретические и экспериментальные исследования [18, 5] показали, что этот эффект приводит к увеличению заселенности $d(x^2 - z^2) \ e_g$ орбиталей ионов Мn по сравнению с заселенностью $d(3y^2 - r^2) \ e_g$ -орбиталей и АФМ-характеру сверхобменных взаимодействий вдоль направления анизотропного сжатия – оси b. Это создает преимущественные условия для формирования АФМ-состояния А-типа.

Спектры рамановского рассеяния света $\Pr_{0.7}Ba_{0.3}MnO_3$, измеренные при различных давлениях и комнатной температуре, показаны на рис. 5. В них присутствуют два хорошо разделенных пика, расположенных на $\nu \sim 490$ и 680 см⁻¹.

Письма в ЖЭТФ том 94 вып. 7-8 2011

770 (b) 2.5 GPa Intensity (arb. units) 600 Raman shift (cm⁻ 11 17.3 510 25.1 200 ss 480 400 800 0 20 Raman shift (cm^{-1}) P (GPa)

Рис. 5. Спектры рамановского рассеяния света в $\Pr_{0.7} Ba_{0.3} MnO_3$ при различных давлениях и комнатной температуре (*a*). Барические зависимости частот изгибающей и симметричной растягивающей колебательных мод и их линейная интерполяция (*b*)

На основе предыдущих исследований [4, 6, 19, 20] можно сделать вывод о том, что пик с $\nu \sim 490\,{
m cm}^{-1}$ соответствует изгибающей колебательной моде (В) симметрии A_q , а пик с $\nu \sim 680$ см⁻¹ – симметричной растягивающей колебательной моде симметрии B_{2a} (SS) кислородных октаэдров. В исследуемой области давлений до 30 ГПа наблюдается примерно линейное возрастание частот наблюдаемых мод (рис. 5). Рассчитанные значения их барических коэффициентов $k_{
u} = (1/
u_0)(d
u/dP)_T$ составили $k_{
m B} = 0.0024\,\Gamma\Pi a^{-1},$ $k_{\rm SS} = 0.0066\,\Gamma\Pi a^{-1}$. Данные величины сравнимы с аналогичными значениями, полученными для $Pr_{0.7}Ca_{0.3}MnO_3$ [4]. В фазе высокого давления интенсивность растягивающей моды SS заметно уменьшается по сравнению с интенсивностью изгибающей моды В (рис. 5). В случае идеальной кристаллической структуры симметрии Ітта мода SS является запрещенной. Однако локальные ян-теллеровские искажения приводят к понижению реальной симметрии и присутствию данной моды в спектрах [4, 21]. Уменьшение интенсивности этой моды указывает на подавление локальных ян-теллеровских искажений.

4. Заключение. Результаты настоящей работы показывают, что воздействие высокого давления в $\Pr_{0.7}Ba_{0.3}MnO_3$ приводит к подавлению исходного ФМ-состояния и появлению АФМ-состояния Атипа, обусловленному анизотропным сжатием кислородных октаэдров. Температура Кюри уменьшается с отрицательным барическим коэффициентом -2.3 К/ГПа, а температура Нееля увеличивается с положительным барическим коэффициентом 8 К/ГПа. Наблюдаемое барическое поведение $T_{\rm C}$ заметно отли-

чается от других манганитов близкого состава с орторомбической структурой симметрии *Pnma* и ромбоэдрической структурой симметрии $R\bar{3}c$, где под давлением наблюдается увеличение температуры Кюри с большими значениями барических коэффициентов.

Уменьшение интенсивности симметричной растягивающей колебательной моды при высоких давлениях указывает на подавление локальных статических ян-теллеровских искажений кристаллической структуры.

Работа выполнена при поддержке гранта Президента РФ # МД-696.2010.2 и госконтрактов # 02.740.11.0542 и 16.518.11.7029.

- 1. Y. Tokura, Colossal Magnetoresistance Oxides, Gordon and Breach, N.Y. (2000).
- E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
- Д. П. Козленко, С. Е. Кичанов, В. И. Воронин и др., Письма в ЖЭТФ 82, 501 (2005).
- 4. Д. П. Козленко, Т. А. Чан, С. Е. Кичанов и др., Письма в ЖЭТФ **92**, 654 (2010).
- 5. Д. П. Козленко, Б. Н. Савенко, ЭЧАЯ **37**(7), 5 (2006).
- A. Congeduti, P. Postorino, E. Caramagno et al., Phys. Rev. Lett. 86, 1251 (2001).
- 7. D. P. Kozlenko, I. N. Goncharenko, B. N. Savenko et al.,

J. Phys.: Condens. Matter 16, 6755 (2004).

- С. В. Труханов, В. А. Хомченко, Л. С. Лобановский и др., ЖЭТФ 130, 1 (2006).
- P. G. Radaelli, G. Iannone, M. Marezio et al., Phys. Rev. B 56, 8265 (1997).
- N. A. Dubrovinskaia and L. S. Dubrovinsky, Rev. Sci. Instrum. 74, 3433 (2003).
- A. P. Hammersley, S. O. Svensson, M. Hanfand et al., High Press. Res. 14, 235 (1996).
- 12. J. Rodriguez-Carvajal, Physica B 192, 55 (1993).
- V. L. Aksenov, A. M. Balagurov, V. P. Glazkov et al., Physica B 265, 258 (1999).
- 14. В. П. Глазков, И. Н. Гончаренко, Физика и техника высоких давлений 1, 56 (1991).
- V. B. Zlokazov and V. V. Chernyshev, J. Appl. Cryst. 25, 447 (1992).
- 16. F. J. Birch, J. Geophys. Res. 91, 4949 (1986).
- A. B. Beznosov, V. A. Desnenko, E. L. Fertman et al., Phys. Rev. B 68, 054109 (2003).
- Z. Fang, I. V. Solovyev, and K. Terakura, Phys. Rev. Lett. 84, 3169 (2000).
- Md. M. Seikh, A. K. Sood, and C. Narayana, Pramana, J. Phys. 64, 119 (2005).
- M. V. Abrashev, J. Backstrom, L. Borjesson et al., Phys. Rev. B 65, 184301 (2002).
- E. Granado, J. A. Sanjurjo, C. Rettori et al., Phys. Stat. Sol. (b) 220, 609 (2000).