Сверхпроводимость в ZrB₁₂ при изотопическом замещении ¹⁰B-¹¹B

 $H. E. Случанко^{+1}$, А. H. Азаревич^{+*}, А. В. Богач⁺, С. Ю. Гаврилкин[×], В. В. Глушков^{+*}, С. В. Демишев^{+*},

А. В. Духненко°, А. Б. Лященко°, К. В. Мицен $^{\times}$, В. Б. Филипов°

+Институт общей физики им. Прохорова РАН, 119991 Москва, Россия

* Московский физико-технический институт, 141700 Долгопрудный, Россия

[×]Физический институт им. Лебедева РАН, 119991 Москва, Россия

^оИнститут проблем материаловедения НАНУ, 03680 Киев, Украина

Поступила в редакцию 22 июля 2011 г. После переработки 9 сентября 2011 г.

Исследовано поведение теплоемкости в нормальном и сверхпроводящем состояниях соединения $\operatorname{ZrB}_{12}(T_C\approx 6\,\mathrm{K})$ в интервале температур 1.9–7 К на монокристаллических образцах высокого качества с различным изотопическим составом по бору. Для додекаборидов $\operatorname{Zr}^{10}B_{12}$, $\operatorname{Zr}^{\mathrm{nat}}B_{12}$ и $\operatorname{Zr}^{11}B_{12}$ найдены значения плотности электронных состояний, константы электрон-фононного взаимодействия $\lambda_{\mathrm{e-ph}} \sim 0.4$, определено поведение термодинамического и верхнего критического полей, а также параметра Гинзбурга– Ландау $\kappa = 0.8-1.14$ с изменением температуры и изотопического состава. Полученные результаты свидетельствуют о реализации в магнитном поле фазового перехода при $T^* = 4-5\,\mathrm{K}$, который не связан с переходом в сверхпроводящем состоянии от I ко II роду. Обсуждается возможность реализации двухщелевой сверхпроводимости II рода и структурного фазового превращения при T^* в додекабориде циркония.

1. Открытие сверхпроводимости в MgB₂ с $T_C \approx 39 \text{ K}$ [1] вызвало значительный интерес к исследованию обширного класса боридов щелочноземельных и переходных металлов. В семействе додекаборидов соединение ZrB₁₂ является БКШ-сверхпроводником с максимальным среди RB₁₂ значением $T_C \approx 6 \text{ K}$ [2,3], причем в образовании куперовских пар в ZrB₁₂ определяющую роль играет квазилокальная колебательная мода ионов Zr⁴⁺, расположенных в полостях усеченных октаэдров B₂₄ в кристаллической ГЦК-структуре типа UB₁₂ [2–5].

В последнее десятилетие с началом исследований сверхпроводимости на монокристаллических образцах ZrB_{12} в литературе (см., например, [2–11]) возникла дискуссия о характере перехода при T_C и механизме фазового превращения при $T^* = 4-5$ К в этом соединении с жестким ковалентным каркасом, сформированным атомами бора. Авторами [3] в ZrB_{12} была обнаружена смена режима с понижением температуры при $T^* \approx 4.7$ К в магнитном поле, которая интерпретировалась как переход от сверхпроводимости I рода к II/1-роду с изменением параметра Гинзбурга–Ландау от 0.67 до 0.87. На близость ZrB_{12} к границе между сверхпроводниками I и II рода было указано также авторами [6]. В то же время в [7] было установлено, что при T = 5 К додекаборид циркония

Для выяснения особенностей сверхпроводящего состояния и характера фазового превращения при T^{*} в ZrB₁₂ представляет интерес исследовать поведение термодинамических характеристик в нормальной и сверхпроводящей фазах на монокристаллах различного качества, отвечающих различным значениям длины свободного пробега носителей заряда и, следовательно, параметра Гинзбурга-Ландау в этом соединении. При этом, поскольку вследствие определяющего влияния квазилокальной моды ионов Zr4+ изотоп-эффект по бору в ZrB12 оказывается пренебрежимо малым ($T_C \sim M^{-\alpha}$ при $\alpha = 0.09$ [12], где М – масса изотопа), для измерений представляется удобным применять образцы различного изотопического состава $(Zr^{10}B_{12}, Zr^{nat}B_{12}$ и $Zr^{11}B_{12})$, в которых основные различия в свойствах обусловливаются степенью загрязнения примесями исходного бора, используемого при синтезе монокристаллов додекаборида циркония.

Письма в ЖЭТФ том 94 вып. 7-8 2011

уже является сверхпроводником II рода, причем, по мнению авторов [2–8], в этом соединении реализуется *s*-тип спаривания. Напротив, в [9–11] для объяснения сверхпроводимости в ZrB₁₂ последовательно были предложены *d*-волновой тип спаривания и двухщелевая сверхпроводимость II рода с $T_C^p = 6$ К и $T_C^d =$ 4.35 К, причем найденные в [9–11] значения параметра Гинзбурга–Ландау оказались значительно выше порога $\kappa_C = 2^{-1/2}$ и составили $\kappa_p = 3.8$ и $\kappa_d = 5.8$.

¹⁾e-mail: nes@lt.gpi.ru

Рис. 1. Температурные зависимости низкотемпературной теплоемкости составов Zr¹¹B₁₂ (a) и Zr^{nat}B₁₂ (b), измеренные при различных значениях внешнего магнитного поля до 1000 Э

Состав	T_C ,	$H_{C}(0),$	$\Delta(0),$	$(dH_{C2}/dT) _{T=T_{ m C}},$	$H_{C2},$	$\kappa(0)$	$\xi(0),$	$\lambda(0),$
	Κ	Э	Κ	\Im/K	Э		Α	Α
$\mathrm{Zr}^{10}\mathrm{B}_{12}$	5.76	361	9.8	-147	584	1.14	751	859
$\mathrm{Zr^{11}B_{12}}$	5.96	395	10.2	-133	547	0.98	776	760
$\mathrm{Zr^{nat}B_{12}}$	5.98	410	10.4	-140	578	1.00	755	752

Характеристики додекаборидов составов ${
m Zr}^{10}{
m B}_{12}, {
m Zr}^{11}{
m B}_{12}$ и ${
m Zr}^{
m nat}{
m B}_{12}^*$

* T_C — температура перехода; $H_C(0)$ — термодинамическое поле; H_{C2} — верхнее критическое поле; $\Delta(0)$ — величина щели; κ — параметр Гинзбурга—Ландау; ξ — длина когерентности; λ — глубина проникновения.

2. В настоящей работе выполнено исследование низкотемпературной теплоемкости монокристаллических образцов высокого качества различного изотопического состава $(Zr^{10}B_{12}, Zr^{nat}B_{12}$ и $Zr^{11}B_{12}$ в диапазоне температур 1.9–7К в магнитном поле до 1 кЭ на установке PPMS-9 (Quantum Design, США). Монокристаллы для измерений были выращены методом вертикального бестигельного индукционного зонного плавления в атмосфере аргона [13]. Для контроля качества образцов применялись рентгеновский дифракционный анализ и измерения оптических спектров. Удаление поверхностного слоя, нарушенного при резке и шлифовке образцов, проводилось при помощи химического травления в [9–11].

3. На рис. 1 в координатах C/T = f(T) для примера представлены температурные зависимости низкотемпературной теплоемкости составов $\mathrm{Zr^{nat}B_{12}}$ и $\mathrm{Zr^{11}B_{12}}$, измеренные в магнитных полях до 1 кЭ.

Как видно из рис. 1, в нулевом поле наблюдается резкий переход в сверхпроводящее состояние вблизи $T_{C} \sim 6 \, {
m K}$ (см. T_{C} в таблице), сопровождающийся скачком электронной теплоемкости, причем ширина перехода не превышает 0.04 К. В магнитном поле выше 600 Э образцы различного изотопического состава $({\rm Zr}^{10}{\rm B}_{12},~{\rm Zr}^{\rm nat}{\rm B}_{12}$ и ${\rm Zr}^{11}{\rm B}_{12})$ находятся в нормальном состоянии. Экстраполяция кривой C/Tпри $H = 1 \kappa \Im$ к нулевой температуре позволяет получить значение коэффициента Зоммерфельда $\gamma = 4.4 - 4.65 \,\mathrm{M}\,\mathrm{J}\,\mathrm{ж}/(\mathrm{моль}\,\mathrm{K}^2),$ близкое к найденному в [3, 4] для $Zr^{nat}B_{12}$, и далее оценить значения плотности электронных состояний $N(E_{\rm F})$ и константы электрон-фононного взаимодействия λ . В рамках соотношения $\gamma = 1/3\pi^2 k_{\rm B}^2 N_b(E_{\rm F})(1 + \lambda_{\rm e-ph})$ с учетом значений $N_b(E_{\rm F}) = 0.10 - 0.11 \, {\rm coct.}/({\rm sB} \cdot {\rm atom}),$ полученных в [14, 15] для ZrB_{12} по результатам расчетов зонной структуры, и найденной нами величины $N(E_{\rm F}) = N_b(E_{\rm F})(1 + \lambda_{\rm e-ph}) =$

Письма в ЖЭТФ том 94 вып. 7-8 2011

= 0.14 - 0.15 сост./(эВ·атом) для константы электронфононного взаимодействия имеем $\lambda_{e-ph} \approx 0.4$ в хорошем согласии с результатом [3, 4].

Температурные зависимости удельной теплоемкости в нормальном и сверхпроводящем состояниях использовались нами далее для оценки термодинамического критического поля $H_C(T)$ в рамках соотношений

$$-1/2\mu_0 V H_C^2(T) = \Delta F(T) = \Delta U(T) - T \Delta S(T),$$
 (1)

$$\Delta U(T) = \int [C_s(T') - C_n(T')] dT', \qquad (2)$$

$$\Delta S(T) = \int dT' [C_s(T') - C_n(T')] / T', \qquad (3)$$

где F, U и S – свободная, внутренняя энергии и энтропия, V – молярный объем, а индексы "n" и "s" соответствуют характеристикам нормальной и сверхпроводящей фаз ZrB_{12} . Интегрирование проводится в диапазоне температур от T до T_C . Перед интегрированием зависимости теплоемкости в нормальном и сверхпроводящем состояниях аппроксимировались функциями вида $C_s(T) = k_1 T^{k_2} e^{-(k_3/T)}$ и $C_n(T) =$ $= k_1 T + k_2 T^3$, где k_i – подгоночные параметры. Полученные значения $H_C(0)$ представлены в таблице. На вставках к рис. 2 и 3 показаны также нормированные зависимости термодинамического $(H_C(T)/H_C(0))$ и

Рис. 2. Температурные зависимости параметра Гинзбурга-Ландау для составов $\operatorname{Zr}^{10}\operatorname{B}_{12}$, $\operatorname{Zr}^{11}\operatorname{B}_{12}$ и Zr^{nat}B₁₂. На вставке показаны нормированные кривые термодинамического поля $H_C(T)/H_C(0)$, найденные интегрированием теплоемкости в рамках соотношений (1)-(3) (см. текст). Цифрами I и II обозначены области сверхпроводимости I и II рода

верхнего критического $(H_{C2}(T)/H_{C2}(0))$ полей, найденные для всех трех исследуемых в работе составов $\mathrm{Zr}^{\mathrm{N}}\mathrm{B}_{12}$ (где $N-10,\,11$ и nat). В таблице, кроме

Письма в ЖЭТФ том 94 вып. 7-8 2011

Рис. 3. Температурные зависимости нормированной величины скачка электронной теплоемкости вблизи T_C для составов $\operatorname{Zr}^{10}B_{12}$, $\operatorname{Zr}^{11}B_{12}$ и $\operatorname{Zr}^{\operatorname{nat}}B_{12}$. На вставке показаны нормированные кривые верхнего критического поля $H_{C2}(T)/H_{C2}(0)$; T^* – температура смены режима сверхпроводимости (см. текст). Сплошная кривая на вставке соответствует фитированию экспериментальных данных БКШ-зависимостью

того, представлены полученные из экспериментальных данных производные верхнего критического поля dH_{C2}/dT при $T = T_C$ и найденные по формуле [16]

$$H_{C2}(0) = -0.69T_C (dH_{C2}/dT)T = T_C$$
(4)

значения верхнего критического поля $H_{C2}(0)$. Далее, в рамках БКШ-соотношений:

$$\Delta(0) = [2\pi N(E_{\rm F})]^{-1/2} H_C(0), \qquad (5)$$

$$\xi(0) = (\Phi_0 / 2\pi H_{C2})^{1/2}, \tag{6}$$

$$\kappa(T) = 2^{-1/2} H_{C2}(T) / H_C(T),$$
(7)

где Φ_0 – квант потока, нами были получены значения величины щели $\Delta(0)$, длины когерентности $\xi(0)$ и глубины проникновения $\lambda(0)$ (см. таблицу) и построены температурные зависимости параметра Гинзбурга–Ландау (ГЛ) $\kappa(T)$ (рис. 2). При этом отношение $2\Delta(0)/k_{\rm B}T_C = 3.43-3.47$, найденное в настоящей работе для соединений ZrB₁₂ различного изотопического состава, с хорошей точностью соответствует значениям 3.52 БКШ-модели и 3.7, полученному в [4].

Сопоставляя характеристики сверхпроводящего состояния для составов $\mathrm{Zr}^{10}\mathrm{B}_{12}$, $\mathrm{Zr}^{\mathrm{nat}}\mathrm{B}_{12}$ и $\mathrm{Zr}^{11}\mathrm{B}_{12}$ (см. таблицу), отметим, что естественным образом монокристаллическим образцам $\mathrm{Zr}^{10}\mathrm{B}_{12}$ с наибольшей концентрацией примесей отвечает наименьшее значение параметров T_C и H_C и максимальные в ряду $\mathrm{Zr}^{N}\mathrm{B}_{12}$ верхнее критическое поле $H_{C2}(0)$ и

производная $dH_{C2}/dT(T_C)$. В результате наибольшие значения параметра ГЛ наблюдаются для состава $\mathrm{Zr}^{10}\mathrm{B}_{12}$ с максимальной среди исследуемых соединений концентрацией примесей. С ростом содержания примесей в монокристаллах $\mathrm{Zr}^N\mathrm{B}_{12}$ уменьшается также амплитуда скачка теплоемкости $\Delta C/\gamma T_C$ вблизи T_C (см. таблицу). Анализ кривых $\kappa(T)$ (рис. 2) приводит к заключению о том, что все исследуемые образцы $\mathrm{Zr}^{11}\mathrm{B}_{12}$ являются сверхпроводниками II рода, поскольку как для $\mathrm{Zr}^{\mathrm{nat}}\mathrm{B}_{12}$, так и для $\mathrm{Zr}^{10}\mathrm{B}_{12}$ и $\mathrm{Zr}^{11}\mathrm{B}_{12}$ кривые $\kappa(T)$ располагаются выше порогового значения $\kappa_C = 2^{-1/2}$. Таким образом, представляется ошибочным сделанный в [3] вывод о фазовом переходе I–II/1 в ZrB_{12} .

В то же время из данных рис. 3, представляющего изменение с температурой приведенной амплитуды скачка теплоемкости, видно, что на кривых $\Delta C/\gamma T_C = f(T)$ наблюдается смена режима в окрестности $T^* pprox 4.7 \, {
m K} \, \left(T^* / T_C \, = \, 0.77
ight)$ для образца с естественной смесью изотопов бора $Zr^{nat}B_{12}$ и при $T^*\,pprox\,4.3\,{
m K}$ и $T^*\,pprox\,4.4\,{
m K}\,\,(T^*/T_C\,pprox\,0.74)$ для изотопически чистых составов $\mathrm{Zr}^{10}\mathrm{B}_{12}$ и $\mathrm{Zr}^{11}\mathrm{B}_{12}$ соответственно. Близкое значение, $T_C^d = T^* = 4.35 \, \mathrm{K},$ для Zr^{nat}B₁₂ было получено в [9-11]. Там оно было сопоставлено второму переходу в сверхпроводящее состояние (двухщелевая сверхпроводимость) в додекабориде циркония. Поскольку значение $T_C^d = T^* =$ $4.35~{
m K}~(T^*/T_C pprox 0.65)$ было получено в [9–11] из измерений глубины проникновения $\lambda(T)$ в отсутствие внешнего постоянного магнитного поля (на вставке к рис.3 точка из [9-11] при T^* и H = 0 показана ромбом), а найденные нами значения $T^* \approx 4.3 - 4.7 \, {
m K}$ соответствуют измерениям теплоемкости в магнитном поле $H = H_{C2}$ (открытый ромб на кривой критических полей на вставке рис. 3), предположение о двухщелевой сверхпроводимости в ZrB₁₂ приводит к выводу о существовании вертикальной фазовой границы между двумя сверхпроводящими фазами на $H{-}T{-}$ диаграмме с переходами при $T_C^d=T^{\,*}=4.35\,{
m K}$ и $T_C^p = 6 \,\mathrm{K}$ (см. вставку на рис. 3).

В такой ситуации, наряду с предложенной в [9–11] интерпретацией в терминах двухщелевой сверхпроводимости, представляется оправданным предположение о структурном фазовом превращении в ZrB_{12} при $T^* = 4-5$ K, аналогичном наблюдавшемуся недавно в LuB_{12} при $T^* = 50-60$ K [17,18]. В то же время, для проверки этой гипотезы требуется проведение дополнительных измерений в нормальном состоянии додекаборида циркония.

4. Выполненное нами исследование теплоемкости соединений $\operatorname{Zr}^N B_{12}$ (где N-10, nat, 11) позволило определить характеристики нормального и сверх-

проводящего состояний додекаборида циркония (см. таблицу). Показано, что коэффициент Зоммерфельда и константа электрон-фононного взаимодействия $\lambda_{
m e-ph} \sim 0.4$ лишь слабо меняются при изотопическом замещении ¹⁰В-¹¹В. Изменения температуры перехода T_C , термодинамического (H_C) и верхнего критического (*H*_{C2}) полей и связанных с ними величины щели $\Delta(0)$, параметра Гинзбурга-Ландау κ , длины когерентности ξ и глубины проникновения λ (см. таблицу) оказываются обусловленными не изотопическим замещением по бору, а присутствием дополнительного количества примесей в изотопически чистых монокристаллах Zr¹⁰B₁₂ и Zr¹¹B₁₂ по сравнению с $\operatorname{Zr}^{\operatorname{nat}} B_{12}$. При этом зависимости $\kappa(T)$ для всех трех составов Zr^NB₁₂ располагаются выше порогового значения $\kappa_C = 2^{-1/2}$, разделяющего сверхпроводники I и II рода. Высказано предположение о существовании в ZrB₁₂ структурного фазового перехода при $T^* \approx 4 - 5$ K.

Авторы признательны Г.Е. Гречневу, А.В. Кузнецову и В.В. Мощалкову за многочисленные полезные обсуждения. Работа выполнена при финансовой поддержке программы ОФН РАН "Сильнокоррелированные электроны в металлах, полупроводниках и магнитных материалах", проекта РФФИ # 10-02-00998-а и контракта с Минобрнаукой (ГК # 16.513.11.3060).

- J. Nagamatsu, N. Nakagawa, T. Muranaka et al., Nature (London) 410, 63 (2001).
- R. Lortz, Y. Wang, S. Abe et al., Phys. Rev. B 72, 024547 (2005).
- Y. Wang, R. Lortz, Yu. B. Paderno et al., Phys. Rev. B 72, 024548 (2005).
- J. Teyssier, R. Lortz, A. Petrovic et al., Phys. Rev. B 78, 134504 (2008).
- A. V. Rybina, K.S. Nemkovski, P. A. Alekseev et al., Phys. Rev. B 82, 024302 (2010).
- M. I. Tsindlekht, G. I. Leviev, I. Asulin et al., Phys. Rev. B 69, 212508 (2004).
- G. I. Leviev, V. M. Genkin, M. I. Tsindlekht et al., Phys. Rev. B 71, 064506 (2005).
- D. Daghero, R. S. Gonnelli, G. A. Ummarino et al., Supercond. Sci. Technol. 17, S250 (2004).
- V. A. Gasparov, N. S. Sidorov, and I. I. Zver'kova, Phys. Rev. B 73, 094510 (2006).
- V.A. Gasparov, Electron structure, transport and superconducting properties of ZrB₁₂, ZrB₂, YB₆ and MgB₂, in Boron Rich Solids: Sensors, Ultra High Temperature Ceramics, Thermoelectrics, Armur (eds. N. Orlovskaya and M. Lugovy), Springer Science+ Business Media B.V., 2011, p. 237.

Письма в ЖЭТФ том 94 вып. 7-8 2011

689

- B. T. Matthias, T. H. Geballe, K. Andres et al., Science 159, 530 (1968).
- Yu. B. Paderno, A. B. Liashchenko, V. B. Filippov, and A. V. Dukhnenko, in Proc. Int. Conf. on Science for Materials in the Frontier of the Centuries: Advantages and Challenges, IPMS NASU, Kiev, 2002, p. 347.
- G. E. Grechnev, A. E. Baranovskiy, V. D. Fil et al., Low Temp. Phys. **34**, 921 (2008).
- 15. M. Belogolovskii, I. Felner, and V. Shaternik, Zirconium dodecaboride, a novel superconducting material with enhanced surface characteristics, in Boron Rich

Solids: Sensors, Ultra High Temperature Ceramics, Thermoelectrics, Armur (eds. N. Orlovskaya and M. Lugovy), Springer Science+ Business Media B.V., 2011, p.195.

- N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).
- 17. Н.Е. Случанко, А.Н. Азаревич, А.В. Богач и др., ЖЭТФ 138, 315 (2010).
- Н. Е. Случанко, А. Н. Азаревич, А. В. Богач и др., ЖЭТФ 140, 536 (2011).