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We propose a theory describing low-temperature properties of magnets with integer spin and large single-
ion easy-plane anisotropy D in magnetic field H directed parallel to the hard axis. Considering the exchange
interaction between spins as a perturbation and using the bosonic spin representation proposed in our recent
paper [1] we find thermal corrections to the elementary excitation spectrum, magnetization and specific heat
in the vicinity of the quantum critical point (QCP) H = H1(0) ~ D in the first nonvanishing orders of the
perturbation theory. An expression is found for the boundary of the paramagnetic phase H.1(T') in the H-T-
plane. The effective interaction between bosons is derived near the QCP. The proposed theory describes well
experimental data obtained in NiCl,—4SC(NH); (DTN).

Introduction. The topic of quantum criticality
has received much attention in recent two decades. Of
particular interest are quantum critical points (QCPs)
which can be reached in experiments by varying easily
controllable parameters such as external magnetic field,
pressure, level of doping, etc. The equivalence between a
spin system and a diluted gas of bosonic particles proved
to be very useful in describing field-induced QCPs in
magnets [2]. This equivalence is revealed and exploited
using appropriate representation of spin operators via
bosonic ones.

We discuss in the present paper properties of a sys-
tem on a 3D lattice with an integer spin and large single-
ion anisotropy which is described by the Hamiltonian

H= DZ:(S;)2 + %ZJi,jSisj +9MBHZSiZa (1)
i ,J g

where g is the Lande factor and D > 0 is assumed to be
much larger than exchange constants (D > J) so that
the ground state at H = 0 is paramagnetic (all spins are
mainly in the quantum state with S# = 0). This system
has at least two field-induced QCPs corresponding to
transitions from the paramagnetic (at H = H.;(T = 0))
and from the fully polarized (at H = H.(T = 0))
phases to other phases which nature depends on the de-
tails of the exchange coupling and the lattice geometry.
We propose in our recent paper [1] a bosonic integer
spin representation that is convenient for the paramag-
netic phase discussion. Using this representation and
considering the exchange interaction as a perturbation
we find in Ref. [1] the spectrum of the Hamiltonian (1)
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in the paramagnetic phase at H = 0 in the third or-
der in the perturbation theory (hereafter referred to as
expansion in terms of J/D for shot).

We continue our study of the model (1) in the present
paper and address its low-temperature properties in the
vicinity of the QCP H = H (T = 0) using the pro-
posed bosonic spin representation. Expressions are de-
rived below in the first nonvanishing orders in J/D for
thermal corrections to the elementary excitation spec-
trum, magnetization and specific heat. An expression is
found for H.;(T') that is the boundary of the paramag-
netic phase in the H—T-plane. The effective interaction
is derived between bosons near the QCP which can be
extracted from experiment. We demonstrate that the
proposed theory describes well the corresponding ex-
perimental data obtained in NiCl,—4SC(NH;), (DTN)
[3-18] which is the most extensively studied compound
of the type under discussion.

The magnetic subsystem of DTN consists of Ni ions
with S = 1 and g = 2.26. Magnetic ions form a body-
centered tetragonal lattice which can be viewed as two
interpenetrating tetragonal sublattices. The exchange
interaction between spins inside one sublattice is anti-
ferromagnetic and strongly anisotropic: the exchange
constant along the tetragonal hard axis (z-axis) is much
larger than those along z- and y-axes. Then, DTN is a
quasi-1D material having two QCPs at H equal to?

2)1t should be noted that there is a certain discrepancy in values
of H.>(0) in the experimental literature on DTN. Specific heat and
magnetocaloric effect measurements give H.2(0) ~ 12.6 T [9, 5].
On the other hand magnetization measurements [11] give the value
of H.2(0) very close to Eq. (3) which was obtained in ac suscepti-
bility measurements [7]. Besides, anomalies in the sound velocity
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HY™(T =
HLY™(T =

0) =2.05T, (2)
0)=12.175T (3)

with a canted antiferromagnetic phase between them. It
was found [5, 7] that the QCP H = H_;(0) belongs to the
3D BEC universality class: He1(T) — He1(0) < T with
o =~ 1.5. The strength of the effective interaction be-
tween long-wavelength bosons was extracted in Ref. [8]
from measurements of magnetization and H.;(T') (see
below). The specific heat at small 7' was measured in
Refs. [9] at H ~ H.1(0) and H ~ H.(0).

Theoretical description of these experimental data
was given using a number of self-consistent calculations
(valid for S = 1 only) with the following parameters
of the Hamiltonian (1): = 89K, J, = 2.2K and
Jzy = 0.18K, where J, is the exchange coupling con-
stant along the chains, J;, is that between chains in-
side one tetragonal sublattice and the interaction be-
tween the tetragonal sublattices is neglected. However
results of ESR [18] and inelastic neutron scattering ex-
periments [5] cannot be described by the Hamiltonian
(1) with the conventional parameters (see discussions
in Refs. [18, 19, 1]). Then, we propose in Ref. [1] the
following set of parameters that differs from the conven-
tional one using which we fit experimentally obtained
spectrum and explain qualitatively the ESR results:

D =772K,
J. =186 K, (4)
Jay = 02K,
V =01K,

where V is the exchange coupling constant between
neighboring spins from different tetragonal sublattices
which is introduced first in Ref. [19]. Then, it is tempt-
ing to reexamine the above mentioned experimental re-
sults for DTN at T # 0 using parameters (4) that is one
of the aims of the present paper.

Method and technique. It is convenient to use
the following spin representation of integer S which is
proposed in our previous study [1]:

[16], the sound attenuation [16] and the thermal conductivity [9, 17]
at a given T' < 0.5 K were observed at fields smaller than those in
the specific heat [9]. The origin of this discrepancy is not discussed
in the literature and we have no explanation for this situation ei-
ther. We choose in our recent [1] and the present consideration
of DTN the value (3) because it provides better agreement be-
tween our expressions for the spectrum found in the third order in
J/D and the experimentally observed spectrum at H = 0 [5] (see
Ref. [1] for detail).
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SZ = blb; — ala;, (5)
— blb; 1+ bib;
S =g +isy=p | bzbz)(s:r +blb)
1+0b;b;
n (S—aaz)(5+1+aaz)ai~
1+aiai
(o) (a-nde)n ©

where a; and b; are bosonic operators, ¢; = /S(S + 1)
and c; = 1/S(S+1) — /(S —1)(S +2)/2 > 0. Repre-
sentation (5), (6) reproduces the spin commutation rela-
tions on the physical subspace which is constrained by
the following additional term in the Hamiltonian (see
discussion in Ref. [1]):

z:aTbTaz i U — +00, (7)
where N is the number of unit cells. Substituting

Egs. (5), (6) into Eq. (1) and taking into account Eq. (7)
one obtains for the Hamiltonian

H= Z €10,h (P
+ch (

+% 3 {[D+ Js_ 1—@(J1+J3)]

P1+P2+pP3+pa

a plp + €1p h( )bpr] +

o+ apbp) + (8a)

x (alalasas + bIbIbsbs)+(U — J3_1)a{b;a3b4} — (8Db)

1 C1C2
AR

P1+P2+P3=p4

X (b{a;agm +albiblby + alazash; + b4b3b201) (8c)

where Jp = Y J;je'PRii
J

2
C

€101(p) = D+ 5 Jp — (9)
of

€1b,h(p) =D + EJP + h, (10)
h = gusH

are spectra of a and b particles in the first order in J/D
(here and below the number in the lower index of the
spectrum indicates its order in J/D). It is convenient
for the following to introduce three Green’s functions

Gan(p) = —i(a,,a;) (11a)
Gy,n(p) = —i(bpbl), (11b)
Fy(p) = —i(b" a}), (1Lc)
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where p = (w,p) and a, is the Fourier transform of
ap (7). Dyson equations for one couple of these Green’s
functions have the form

Gan(P) = Goan(p) [1 + Zan(P)Gan(p) + Hh( )Fh(P)]
Fr(p) = Gop,n(—p) [a(p)Gan(p) + Zon(—p)Fu(p)]
(12)

where Goan(p) = [w — €1an(p] + i)}, Goon(p) =
= [w — €1p,n(P) + 6], T and II are normal and anom-
alous self-energy parts, respectively. Solving Egs. (12)
and the couple of equations for G n(p) and Fj(p) one
obtains

Gunlp) = 50 (13)
Gual) = et ) (14)
Fulo) =~ i, (15)
Dh(p) = [0~ c10.(p) — Ean(p)] (16)

X [w + ewn(p + Eb,h(—P)] +[Ma(p)>. (17)

Spectra of a and b particles should be found from equa-
tions

Dplean(P);Pl =0,  Dn(—epn(p),p) =0. (18)

T = 0 and H = 0. Because a and b particles are
equivalent at H = 0 one has

Gah=0(p) = Gp,n=0(p) = G(p), (19a)
Ya,n=0(P) = Tb,n=0(p) = X(p), (19b)
M=o (p) = II(p), (19¢)
€a,h=0(P) = €p,n=0(P) = €(P)- (19d)

We calculate in our previous paper [1] ¥(p), II(p) and
the spectrum €(p) up to the third order in J/D.

T =0 and H # 0. Taking into account that
[H,>°SZ] = 0 and using Eq. (5) one concludes that h

(3
and —h play the role of chemical potentials for a and b
particles, respectively, so that

Gon(w,p) = G(w + h,p), (20a)

Gb,h(wv p) = G(w - h7 p)7 (20b)

Fh (wa p) = F(w + ha p)a (20C)

and, correspondingly, ¥,p(w,p) = X(w + h,p),
Eb,h(wap) = E(w - hap)a Hh(wap) = H(w + ha p)a

eu.,h(p) = 6(p) - h7 (213)

e,n(p) = €(p) + h, (21b)

where ¢(p), £(p), II(p), G(p) and F(p) are defined in
Egs. (19).

It is seen from Eq. (21a) that the spectrum of a par-
ticles has a gap which vanishes at H = H,.;(0) and the
spectrum becomes unstable at larger fields, where

gusHe (T = 0) = €(po) (22)

and po is the momentum at which e(p) has a minimum.
This instability signifies a transition to another phase.
One has pg = (m, 7, 7) in DTN because exchange cou-
plings are antiferromagnetic.

One concludes from Egs. (20), (21) that magnetic
field lifts the equivalence between a and b particles.
However magnetization M (H,T = 0) = gup(S?) re-
mains zero in the paramagnetic phase as it can be readily
seen from Egs. (5), (20a) and (20b). Thermal fluctua-
tions make finite the magnetization.

T # 0 and H ~ H.;(0). Let us consider the dis-
persion equation (18) for a particles. We have found
its solution in our previous paper [1] at T = 0 up to
the third order in J/D. The aim of the present discus-
sion is to find temperature corrections to the spectrum
d7€q,5(P) in the first nonvanishing orders in J/D and T
considering the temperature to be small enough T < J.
Then, it is convenient to represent the spectrum and
self-energy parts using Egs. (20) in the following form:

Ea,,h(p) = 6(p) —h+ 6T€a,h(p)a (23)

Yle(p), p] +

+67%4,nle(P) — h, P, (24)

Yonla,m(P),P] =
9%(w,p)

+ 6T6avh (p) 8w

w=¢(p)

where 0r¥, (w,p) is the temperature correction to
Yo,n(w, p). Expressions similar to Eq. (24) can be writ-
ten for Xp p[—€,(P), p] and IIx[eq(p), p]. Substituting
these equations into Eq. (18) and using results of our
previous calculation [1] of self-energy parts we have in
the first order in J/D dr€q,p,n = 0724 1[€(P) — R, p] and
H.1(T) = e(po) +17X,(0, ko). The first order correction
in J/D to 67, [e(p) —h, p] is given by the Hartree—Fock
diagram shown in Fig.la. As a result one obtains

M(H,T
6T5a,h (p) =4r, [E(p) —h,0, p] ga (25)
guB
M(H,T
g,ufBHcl (T) = €(P0) + 4Fa(0a kaO)ga (26)
9UB
where I', (2, p, q) is the vertex and
M(HT) 1
— = Nle(k) — h 27
s = LN (1)
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Fig.1. (a) - The Hartree-Fock diagram giving the first
order correction in J/D to the self-energy part. (b) — Dia-
gram equation for the vertex ['q(w, p,q) which is involved
in the Hartree-Fock diagram. Lines are Green’s function
(11a) of a particles. Black dots are bare vertexes given by
term (8b) in the Hamiltonian

is equal to the magnetization in the second order in J/D
at T < €(0) + h. It is explained in our previous pa-
per [1] that ladder diagrams give the main contribu-
tion to the vertex leading to the Bethe—Salpeter equa-
tion for 'y (Q,p,q) that is shown in Fig.1b. To cal-
culate the vertex in the leading order in J/D one can
use Green’s function in the form G,(w,p) = 1/[w —
e1(p) + h + i6]. When Q ~ J, the solution can be
tried in the form I'y(Q, p,q) = A(Q) + (Jp — Jp+q) /4 +
B*()J5 . (q—ko)/2 +Bmy(Q)Jsi(q7k0)/2. The solution is
quite cumbersome and we do not present it here. We
point out only that I'y ~ J when Q ~ J. The value

vo = 2T, (0,0, ko) (28)

is an effective two-particle interaction which can be
found experimentally at small 7" as a slope of the plot of
H 1 (T) vs M.(T) = M[H = Hc1(T),T] (see Egs. (26)
and (27)).

The specific heat can be obtained using Eq. (1) and
the formula C(H,T) = d(#)/dT with the following re-
sult in the first order in J/D:

C(H,T)= {% 3 fer () — ]V [ea(0c) - h]} . (29)
k

where €;(k) and e3(k) are spectra at T' = 0 in the first
and in the third orders in J/D, respectively.
Application to DTN. Equations for M(H,T),
H.(T) and C(H,T) obtained above are applicable at
H =~ H.(0) only at small enough 7. In the case
of a quasi-1D system it usually means that the tem-
perature cannot exceed the value of the exchange con-
stant between spin chains (~ 0.2 K in DTN). At such
T the quasi-1D system behaves like a 3D one and we
obtain the proportionality to T%/2 of H,,(T) — H.1(0),
M.(T) = M[H = Hn(T),T] and C[H = Ha(T),T]
expected for QCP of 3D BEC universality class.
12 [Iucema B ARIITD
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This proportionality was really observed experimen-
tally in DTN. Fig.2 shows the experimental data for

H, (T)

0.18F b)
| o
= 0.12 .
3
2 I o
e i o
= 0.06-
I 5
1 1 1 | 1 1 1 | 1 1
0 04 0.8
T3/2 (K3/2)

Fig.2. Plots of (a) Hc1 and (b) M. (magnetization at
H = H.(T)) vs T*? in DTN. Circles and diamonds are
experimental data from Ref. [8] and Ref. [7], respectively.
Lines are drawn using Egs. (26), (27) and parameters (4)

M, (T) and H.(T) obtained in Ref. [8] and Ref. [7] for
05K <T < 1K and 1mK < T < 300mK, respectively,
together with results of our calculations with Egs. (26),
(27) and parameters (4). The agreement between the
theory and experiment is very good at T' < 0.3 K. Large
temperature fluctuations come into play at greater T'
which are not taken into account in Egs. (26) and (27).
As a result the deviation from experimental data is no-
ticeable at T > 0.5K for h.;(T) and at T' > 0.7K for
M. (T).

Although (and quite expectedly) neither H.q(7) nor
M,(T) do not depend linearly on T%/2 at T > 0.7 K in
DTN (see Fig.2), it is observed experimentally [8] that
H_.1(T) is a linear function of M.(T) at 0.5 K < T < 1K
as is demonstrated in Fig. 3. The effective two-particle
interaction is extracted from this plot in Ref. [8] as it is
explained above with the result vy ~ 0.61 meV. However,
most likely that vy is renormalized by thermal fluctua-
tions in DTN at such large T. We plot in Fig.3 also
H.(T) vs M.(T) using the low-temperature experimen-
tal data of Ref. [7] for H¢(T') and results of our compu-
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Fig.3. H.1(T) versus M.(T') in DTN. Circles are exper-
imental data from Ref. [8]. Diamonds correspond to ex-
perimental data of Ref. [7] for H.1(T) and results of our
computation of M.(T) by Eq. (27) with parameters (4).
Lines are drawn using Eqgs. (26), (27) and parameters (4)

tation of M.(T) by Eq. (27) with parameters (4). The
effective interaction obtained in this way is equal ap-
proximately to 0.44 meV that is 28% smaller than the
value experimentally found in Ref. [8] and that is in ex-
cellent agreement with the result of our calculation of vy
by Eq. (28) and parameters (4).

Experimental data of Ref. [9] for C(H,T) at H ~
H_.1(0) are shown in Fig.4 together with results of our

03F ©
)
< 021
£
@)

0.1

| ! | !
0 0.1 0.2 0.3 0.4

T (K)

Fig. 4. Specific heat in DTN. Experimental data are taken
from Ref. [9]. Lines are drawn using Eq. (29) and para-
meters (4)

calculations with Eq. (29), parameters (4) and expres-
sion for e3(p) found in Ref. [1]. A reasonable agreement
between the theory and experiment is seen at 7' < 0.3 K.
The specific heat of the model (1) with parameters (4)

is proportional to T3/? at H = H,»(T) as well because
the spectrum in the fully polarized phase given exactly
(at T =0) by e(p) =h—(25—-1)D — SJo + SJp is
also quadratic near its minimum. It is demonstrated in
Ref. [9] that due to the strong renormalization of the
spectrum in the paramagnetic phase C[H = H.(T),T]
is about 6 times larger than C[H = H.1(T),T]. Simple
calculation of the specific heat with the spectrum e(p)
and parameters (4) shows that in agreement with the ex-
periment C[H = H.(T),T] is approximately 5.7 times
larger than C(H = H.1(T),T) given by Eq. (29).

To conclude, we develop a theory describing low-
temperature properties of the model (1) with integer
spin and large D in magnetic field. We find thermal
corrections to the elementary excitation spectrum, mag-
netization and specific heat in the vicinity of the QCP
H = H;(0) ~ D/(gps) in the first nonvanishing or-
ders in J/D. The proposed theory with parameters (4)
suggested in Ref. [1] describes well low-temperature ex-
perimental data obtained in NiCly—4SC(NHz)s,.
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