
Pis'ma v ZhETF, vol. 94, iss. 8, pp. 710 { 715 c 2011 October 25Quantum magnets with large single-ion easy-plane anisotropy inmagnetic �eldA.V. Sizanov�1), A. V. Syromyatnikov�y1)�Petersburg Nuclear Physics Institute, Gatchina, 188300 St. Petersburg, RussiayDepartment of Physics, St. Petersburg State University, 198504 St. Petersburg, RussiaSubmitted 14 September 2011We propose a theory describing low-temperature properties of magnets with integer spin and large single-ion easy-plane anisotropy D in magnetic �eld H directed parallel to the hard axis. Considering the exchangeinteraction between spins as a perturbation and using the bosonic spin representation proposed in our recentpaper [1] we �nd thermal corrections to the elementary excitation spectrum, magnetization and speci�c heatin the vicinity of the quantum critical point (QCP) H = Hc1(0) � D in the �rst nonvanishing orders of theperturbation theory. An expression is found for the boundary of the paramagnetic phase Hc1(T ) in the H{T -plane. The e�ective interaction between bosons is derived near the QCP. The proposed theory describes wellexperimental data obtained in NiCl2{4SC(NH2)2 (DTN).Introduction. The topic of quantum criticalityhas received much attention in recent two decades. Ofparticular interest are quantum critical points (QCPs)which can be reached in experiments by varying easilycontrollable parameters such as external magnetic �eld,pressure, level of doping, etc. The equivalence between aspin system and a diluted gas of bosonic particles provedto be very useful in describing �eld-induced QCPs inmagnets [2]. This equivalence is revealed and exploitedusing appropriate representation of spin operators viabosonic ones.We discuss in the present paper properties of a sys-tem on a 3D lattice with an integer spin and large single-ion anisotropy which is described by the HamiltonianH = DXi (Szi )2 + 12Xi;j Ji;jSiSj + g�BHXi Szi ; (1)where g is the Lande factor and D > 0 is assumed to bemuch larger than exchange constants (D � J) so thatthe ground state at H = 0 is paramagnetic (all spins aremainly in the quantum state with Sz = 0). This systemhas at least two �eld-induced QCPs corresponding totransitions from the paramagnetic (at H = Hc1(T = 0))and from the fully polarized (at H = Hc2(T = 0))phases to other phases which nature depends on the de-tails of the exchange coupling and the lattice geometry.We propose in our recent paper [1] a bosonic integerspin representation that is convenient for the paramag-netic phase discussion. Using this representation andconsidering the exchange interaction as a perturbationwe �nd in Ref. [1] the spectrum of the Hamiltonian (1)1)e-mail: alexey.sizanov@gmail.com, syromyat@thd.pnpi.spb.ru

in the paramagnetic phase at H = 0 in the third or-der in the perturbation theory (hereafter referred to asexpansion in terms of J=D for shot).We continue our study of the model (1) in the presentpaper and address its low-temperature properties in thevicinity of the QCP H = Hc1(T = 0) using the pro-posed bosonic spin representation. Expressions are de-rived below in the �rst nonvanishing orders in J=D forthermal corrections to the elementary excitation spec-trum, magnetization and speci�c heat. An expression isfound for Hc1(T ) that is the boundary of the paramag-netic phase in the H{T -plane. The e�ective interactionis derived between bosons near the QCP which can beextracted from experiment. We demonstrate that theproposed theory describes well the corresponding ex-perimental data obtained in NiCl2{4SC(NH2)2 (DTN)[3{18] which is the most extensively studied compoundof the type under discussion.The magnetic subsystem of DTN consists of Ni ionswith S = 1 and g = 2:26. Magnetic ions form a body-centered tetragonal lattice which can be viewed as twointerpenetrating tetragonal sublattices. The exchangeinteraction between spins inside one sublattice is anti-ferromagnetic and strongly anisotropic: the exchangeconstant along the tetragonal hard axis (z-axis) is muchlarger than those along x- and y-axes. Then, DTN is aquasi-1D material having two QCPs at H equal to2)2)It should be noted that there is a certain discrepancy in valuesof Hc2(0) in the experimental literature on DTN. Speci�c heat andmagnetocaloric e�ect measurements give Hc2(0) � 12:6 T [9, 5].On the other hand magnetization measurements [11] give the valueof Hc2(0) very close to Eq. (3) which was obtained in ac suscepti-bility measurements [7]. Besides, anomalies in the sound velocity710 �¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 7 { 8 2011



Quantum magnets with large single-ion easy-plane anisotropy : : : 711HDTNc1 (T = 0) = 2:05T; (2)HDTNc2 (T = 0) = 12:175T (3)with a canted antiferromagnetic phase between them. Itwas found [5, 7] that the QCPH = Hc1(0) belongs to the3D BEC universality class: Hc1(T )�Hc1(0) / T� with� � 1:5. The strength of the e�ective interaction be-tween long-wavelength bosons was extracted in Ref. [8]from measurements of magnetization and Hc1(T ) (seebelow). The speci�c heat at small T was measured inRefs. [9] at H � Hc1(0) and H � Hc2(0).Theoretical description of these experimental datawas given using a number of self-consistent calculations(valid for S = 1 only) with the following parametersof the Hamiltonian (1): D = 8:9K, Jz = 2:2K andJxy = 0:18K, where Jz is the exchange coupling con-stant along the chains, Jxy is that between chains in-side one tetragonal sublattice and the interaction be-tween the tetragonal sublattices is neglected. Howeverresults of ESR [18] and inelastic neutron scattering ex-periments [5] cannot be described by the Hamiltonian(1) with the conventional parameters (see discussionsin Refs. [18, 19, 1]). Then, we propose in Ref. [1] thefollowing set of parameters that di�ers from the conven-tional one using which we �t experimentally obtainedspectrum and explain qualitatively the ESR results:D = 7:72 K;Jz = 1:86 K; (4)Jxy = 0:2 K;V = 0:1 K;where V is the exchange coupling constant betweenneighboring spins from di�erent tetragonal sublatticeswhich is introduced �rst in Ref. [19]. Then, it is tempt-ing to reexamine the above mentioned experimental re-sults for DTN at T 6= 0 using parameters (4) that is oneof the aims of the present paper.Method and technique. It is convenient to usethe following spin representation of integer S which isproposed in our previous study [1]:[16], the sound attenuation [16] and the thermal conductivity [9, 17]at a given T < 0:5 K were observed at �elds smaller than those inthe speci�c heat [9]. The origin of this discrepancy is not discussedin the literature and we have no explanation for this situation ei-ther. We choose in our recent [1] and the present considerationof DTN the value (3) because it provides better agreement be-tween our expressions for the spectrum found in the third order inJ=D and the experimentally observed spectrum at H = 0 [5] (seeRef. [1] for detail).

Szi = byi bi � ayiai; (5)S+i = Sxi + iSyi = byis (S � byi bi)(S + 1 + byi bi)1 + byi bi ++s (S � ayiai)(S + 1 + ayiai)1 + ayiai ai �� byi �c1 � c2 byi bi�+ �c1 � c2 ayiai� ai; (6)where ai and bi are bosonic operators, c1 =pS(S + 1)and c2 =pS(S + 1)�p(S � 1)(S + 2)=2 > 0. Repre-sentation (5), (6) reproduces the spin commutation rela-tions on the physical subspace which is constrained bythe following additional term in the Hamiltonian (seediscussion in Ref. [1]):HU = UN Xi ayi byiaibi; U ! +1; (7)where N is the number of unit cells. SubstitutingEqs. (5), (6) into Eq. (1) and taking into account Eq. (7)one obtains for the HamiltonianH =Xp ��1a;h(p)aypap + �1b;h(p)bypbp�++Xp c212 Jp �aypby�p + apb�p�+ (8a)+ 1N Xp1+p2+p3+p4(�D+12J3�1�c1c22 (J1+J3)��� (ay1ay2a3a4 + by1by2b3b4)+(U � J3�1)ay1by2a3b4)� (8b)� 1N Xp1+p2+p3=p4 c1c22 J1 �� �by1ay2ay3a4 + ay1by2by3b4 + ay4a3a2b1 + by4b3b2a1� ; (8c)where Jp =Pj JijeipRij ,�1a;h(p) = D + c212 Jp � h; (9)�1b;h(p) = D + c212 Jp + h; (10)h = g�BHare spectra of a and b particles in the �rst order in J=D(here and below the number in the lower index of thespectrum indicates its order in J=D). It is convenientfor the following to introduce three Green's functionsGa;h(p) = �ihapaypi; (11a)Gb;h(p) = �ihbpbypi; (11b)Fh(p) = �ihby�paypi; (11c)�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 7 { 8 2011



712 A.V. Sizanov, A.V. Syromyatnikovwhere p = (!;p) and ap is the Fourier transform ofap(�). Dyson equations for one couple of these Green'sfunctions have the formGa;h(p) = G0a;h(p) [1 + �a;h(p)Ga;h(p) + �h(p)Fh(p)] ;Fh(p) = G0b;h(�p) ��h(p)Ga;h(p) + �b;h(�p)Fh(p)� ;(12)where G0a;h(p) = [! � �1a;h(p] + i�)�1, G0b;h(p) == [!� �1b;h(p) + i�]�1, � and � are normal and anom-alous self-energy parts, respectively. Solving Eqs. (12)and the couple of equations for Gb;h(p) and Fh(p) oneobtainsGa;h(p) = ! +�b;h(�p)Dh(p) ; (13)Gb;h(p) = ! +�a;h(�p)Dh(�p) ; (14)Fh(p) = ��h(p)Dh(p) ; (15)Dh(p) = �! � �1a;h(p)� �a;h(p)�� (16)� �! + �1b;h(p+�b;h(�p)�+ j�h(p)j2: (17)Spectra of a and b particles should be found from equa-tionsDh[�a;h(p);p] = 0; Dh(��b;h(p);p) = 0: (18)T = 0 and H = 0. Because a and b particles areequivalent at H = 0 one hasGa;h=0(p) = Gb;h=0(p) = G(p); (19a)�a;h=0(p) = �b;h=0(p) = �(p); (19b)�h=0(p) = �(p); (19c)�a;h=0(p) = �b;h=0(p) = �(p): (19d)We calculate in our previous paper [1] �(p), �(p) andthe spectrum �(p) up to the third order in J=D.T = 0 and H 6= 0. Taking into account that[H;Pi Szi ] = 0 and using Eq. (5) one concludes that hand �h play the role of chemical potentials for a and bparticles, respectively, so thatGa;h(!;p) = G(! + h;p); (20a)Gb;h(!;p) = G(! � h;p); (20b)Fh(!;p) = F (! + h;p); (20c)and, correspondingly, �a;h(!;p) = �(! + h;p),�b;h(!;p) = �(! � h;p), �h(!;p) = �(! + h;p),�a;h(p) = �(p)� h; (21a)�b;h(p) = �(p) + h; (21b)

where �(p), �(p), �(p), G(p) and F (p) are de�ned inEqs. (19).It is seen from Eq. (21a) that the spectrum of a par-ticles has a gap which vanishes at H = Hc1(0) and thespectrum becomes unstable at larger �elds, whereg�BHc1(T = 0) = �(p0) (22)and p0 is the momentum at which �(p) has a minimum.This instability signi�es a transition to another phase.One has p0 = (�; �; �) in DTN because exchange cou-plings are antiferromagnetic.One concludes from Eqs. (20), (21) that magnetic�eld lifts the equivalence between a and b particles.However magnetization M(H;T = 0) = g�BhSzi i re-mains zero in the paramagnetic phase as it can be readilyseen from Eqs. (5), (20a) and (20b). Thermal uctua-tions make �nite the magnetization.T 6= 0 and H � Hc1(0). Let us consider the dis-persion equation (18) for a particles. We have foundits solution in our previous paper [1] at T = 0 up tothe third order in J=D. The aim of the present discus-sion is to �nd temperature corrections to the spectrum�T �a;h(p) in the �rst nonvanishing orders in J=D and Tconsidering the temperature to be small enough T � J .Then, it is convenient to represent the spectrum andself-energy parts using Eqs. (20) in the following form:�a;h(p) = �(p)� h+ �T �a;h(p); (23)�a;h[�a;H(p);p] = �[�(p);p] ++ �T �a;h(p) @�(!;p)@! ����!=�(p)+�T�a;h[�(p)� h;p]; (24)where �T�a;h(!;p) is the temperature correction to�a;h(!;p). Expressions similar to Eq. (24) can be writ-ten for �b;h[��a(p);p] and �h[�a(p);p]. Substitutingthese equations into Eq. (18) and using results of ourprevious calculation [1] of self-energy parts we have inthe �rst order in J=D �T �a;p;h = �T�a;h[�(p)�h;p] andHc1(T ) = �(p0)+�T�a(0;k0): The �rst order correctionin J=D to �T�a��(p)�h;p� is given by the Hartree{Fockdiagram shown in Fig. 1a. As a result one obtains�T �a;h(p) = 4�a��(p)� h; 0;p�M(H;T )g�B ; (25)g�BHc1(T ) = �(p0) + 4�a(0; 0;k0)M(H;T )g�B ; (26)where �a(
;p;q) is the vertex andM(H;T )g�B = 1N Xk N [�(k)� h] (27)�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 7 { 8 2011
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k0Fig. 1. (a) { The Hartree{Fock diagram giving the �rstorder correction in J=D to the self-energy part. (b) { Dia-gram equation for the vertex �a(!;p;q) which is involvedin the Hartree{Fock diagram. Lines are Green's function(11a) of a particles. Black dots are bare vertexes given byterm (8b) in the Hamiltonianis equal to the magnetization in the second order in J=Dat T � �(0) + h. It is explained in our previous pa-per [1] that ladder diagrams give the main contribu-tion to the vertex leading to the Bethe{Salpeter equa-tion for �a(
;p;q) that is shown in Fig. 1b. To cal-culate the vertex in the leading order in J=D one canuse Green's function in the form Ga(!;p) = 1=[! ��1(p) + h + i�]. When 
 � J , the solution can betried in the form �a(
;p;q) = A(
)+ (Jp� Jp+q)=4+Bz(
)Jzp+(q�k0)=2+Bxy(
)Jxyp+(q�k0)=2: The solution isquite cumbersome and we do not present it here. Wepoint out only that �a � J when 
 � J . The valuev0 = 2�a(0; 0;k0) (28)is an e�ective two-particle interaction which can befound experimentally at small T as a slope of the plot ofHc1(T ) vs Mc(T ) = M [H = Hc1(T ); T ] (see Eqs. (26)and (27)).The speci�c heat can be obtained using Eq. (1) andthe formula C(H;T ) = dhHi=dT with the following re-sult in the �rst order in J=D:C(H;T )= ddT ( 1N Xk ��1(k) � h�N��3(k) � h�) ; (29)where �1(k) and �3(k) are spectra at T = 0 in the �rstand in the third orders in J=D, respectively.Application to DTN. Equations for M(H;T ),Hc1(T ) and C(H;T ) obtained above are applicable atH � Hc1(0) only at small enough T . In the caseof a quasi-1D system it usually means that the tem-perature cannot exceed the value of the exchange con-stant between spin chains (� 0:2 K in DTN). At suchT the quasi-1D system behaves like a 3D one and weobtain the proportionality to T 3=2 of Hc1(T ) � Hc1(0),Mc(T ) = M [H = Hc1(T ); T ] and C[H = Hc1(T ); T ]expected for QCP of 3D BEC universality class.

This proportionality was really observed experimen-tally in DTN. Fig. 2 shows the experimental data for
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is proportional to T 3=2 at H = Hc2(T ) as well becausethe spectrum in the fully polarized phase given exactly(at T = 0) by "(p) = h � (2S � 1)D � SJ0 + SJp isalso quadratic near its minimum. It is demonstrated inRef. [9] that due to the strong renormalization of thespectrum in the paramagnetic phase C[H = Hc2(T ); T ]is about 6 times larger than C[H = Hc1(T ); T ]. Simplecalculation of the speci�c heat with the spectrum "(p)and parameters (4) shows that in agreement with the ex-periment C[H = Hc2(T ); T ] is approximately 5.7 timeslarger than C(H = Hc1(T ); T ) given by Eq. (29).To conclude, we develop a theory describing low-temperature properties of the model (1) with integerspin and large D in magnetic �eld. We �nd thermalcorrections to the elementary excitation spectrum, mag-netization and speci�c heat in the vicinity of the QCPH = Hc1(0) � D=(g�B) in the �rst nonvanishing or-ders in J=D. The proposed theory with parameters (4)suggested in Ref. [1] describes well low-temperature ex-perimental data obtained in NiCl2{4SC(NH2)2.This work was supported by RF President (grant#MK-329.2010.2) and RFBR grant #09-02-00229.1. A. V. Sizanov and A.V. Syromyatnikov, Phys. Rev. B84, 054445 (2011).2. T. Giamarchi, Ch. R}uegg, and O. Tcherniyshyov, Nat.Phys. 4, 198 (2008).3. M. Orend�a�c, S. Zvyagin, A. Orend�a�cov�a et al., Phys.Rev. B 60, 4170 (1999).4. M. Sieling, T. Rietha, S. Schmidta et al., J. Magn. Magn.Mater. 177{181, 695 (1998).5. V. S. Zapf, D. Zocco, B. R. Hansen et al., Phys. Rev.Lett. 96, 077204 (2006).6. S. A. Zvyagin, J. Wosnitza, C.D. Batista et al., Phys.Rev. Lett. 98, 047205 (2007).7. L. Yin, J. S. Xia, V. S. Zapf et al., Phys. Rev. Lett. 101,187205 (2008).8. A. Paduan-Filho, K.A. Al-Hassanieh, P. Sengupta el al.,Phys. Rev. Lett. 102, 077204 (2009).9. Y. Kohama, A.V. Sologubenko, N.R. Dilley et al., Phys.Rev. Lett. 106, 037203 (2011).10. M. Orend�a�c, A. Orend�a�cov�a, J. �Cern�ak et al., Phys.Rev. B 52, 3435 (1995).11. A. Paduan-Filho, X. Gratens, and N. F. Oliveira, Phys.Rev. B 69, 020405 (2004).12. M. Orend�a�c, E. �Ci�zm�ar, A. Orend�a�cov�a et al., Phys.Rev. B 61, 3223 (2000).13. R. L. Carlin, K.O. Joung, A. P. Filho et al., J. Phys. C:Solid State Phys. 12, 293 (1979).14. J. P. Renard, M. Verdaguer, L. P. Regnault et al., Euro-phys. Lett. 3, 945 (1987).�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 7 { 8 2011



Quantum magnets with large single-ion easy-plane anisotropy : : : 71515. S. Cox, R.D. McDonald, M. Armanious et al., Phys.Rev. Lett. 101, 087602 (2008).16. O. Chiatti, A. Sytcheva, J. Wosnitza et al., Phys. Rev.B 78, 094406 (2008).17. X. F. Sun, W. Tao, X.M. Wang et al., Phys. Rev. Lett. 102, 167202 (2009).18. S. A. Zvyagin, J. Wosnitza, A.K. Kolezhuk et al., Phys.Rev. B 77, 092413 (2008).19. A.V. Sizanov and A.V. Syromyatnikov, J. Phys.: Con-dens. Matter 23, 146002 (2011).

�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 7 { 8 2011 12�


