Исследование мультиферроика Bi_{0.8}La_{0.2}FeO₃ методом эффекта Мёссбауэра на ядрах ⁵⁷Fe

В. С. Покатилов¹⁾, А. С. Сигов, А. О. Коновалова

Московский государственный технический университет радиотехники, электроники и автоматики, 119454 Москва, Россия

Поступила в редакцию 18 августа 2011 г. После переработки 28 сентября 2011 г.

Методом мёссбауэровской спектроскопии измерены параметры сверхтонких взаимодействий в мультиферроике Bi_{0.8}La_{0.2}FeO₃ в диапазоне температур 87-850 К. Обнаружено, что при замещении 0.2 мол.% Ві на La пространственная спин-модулированная структура, которая существует в BiFeO₃, разрушается и появляется однородная антиферромагнитная структура. Измерены температуры магнитного (температура Нееля, $T_{\rm N} = 677 \pm 3$ К) и сегнетоэлектрического (температура Кюри, $T_C = 773 \pm 3$ К) переходов, а также температура Дебая ($\Theta = 431 \pm 12$).

В настоящее время перовскиты на основе BiFeO₃ широко исследуются как с точки зрения фундаментальных свойств сложных металлооксидов, так и в свете возможных практических применений. Coединение BiFeO₃ принадлежит к классу перовскитов и имеет дальнее антиферромагнитное (температура Нееля $T_{\rm N}~=~640~{\rm K}$) и антисегнетоэлектрическое (температура Кюри $T_{\rm C}~=~1083\,{
m K}$) упорядочение [1]. В ВіFeO₃ методом нейтронографии была обнаружена пространственная спин-модулированная структура (ПСМС) циклоидного типа с периодом модуляции $\lambda = 620 \,\text{\AA}$, не соизмеримым с кристаллической решеткой [2]. Эта структура усредняет спонтанную намагниченность М и магнитоэлектрический эффект а. В результате они очень малы в BiFeO₃ [3]. Как отмечается во многих работах (см., например, [3]), разрушение ПСМС в соединении $BiFeO_3$ должно приводить к усилению α и M. Этот эффект наблюдается, например, при изменении кристаллической решетки при замещении трехвалентных ионов Ві на трех- или двухвалентные ионы [3].

При исследовании и поиске новых мультиферроиков на основе $BiFeO_3$ большое значение приобретают экспериментальные методы, которые позволяют обнаруживать ПСМС, ее разрушение при замещении ионов висмута или железа, а также при изменении кристаллической структуры. Такими методами являются, кроме нейтронографии, также методы ядерного магнитного резонанса (ЯМР) и эффекта Мёссбауэра. Существование ПСМС в BiFeO₃ приводит к специфическому спектру ЯМР в виде узкого распределения резонансных частот на ядрах ⁵⁷ Fe или распределения магнитных сверхтонких полей (СТП), имеющего два острых пика по краям спектра и плато

Письма в ЖЭТФ том 94 вып. 9-10 2011

757

между ними. Такой спектр ЯМР был обнаружен в ВіFeO₃ [4-6], что подтвердило существование ПСМС в этом перовските. В Bi_{0.8}La_{0.2}FeO₃ спектр ЯМР имел форму, характерную для однородной спиновой структуры, что указывает на разрушение ПСМС [7]. В работе [5] ВіFeO₃ исследовался с помощью эффекта Мёссбауэра на ядрах ⁵⁷ Fe. Было обнаружено, что распределение магнитных сверхтонких полей P(H)на ядрах ⁵⁷Fe, восстановленное из мёссбауэровского спектра, также имеет характерную форму с двумя пиками, аналогичную форме P(H), полученной методом ЯМР. Целью настоящей работы являлось исследование методом эффекта Мёссбауэра изменений кристаллической структуры и параметров сверхтонких взаимодействий (магнитные сверхтонкие поля Н на ядрах ⁵⁷ Fe, квадрупольные сдвиги є и сдвиги центра мёссбауэровского спектра δ) при замещении трехвалентных ионов висмута (в количестве 0.2 мол.%) трехвалентными ионами лантана.

Образцы перовскита $Bi_{0.8}La_{0.2}FeO_3$ приготавливались на воздухе методом обычной твердотельной керамической технологии. Соответствующие количества сухих порошков Bi_2O_3 , La_2O_3 и Fe_2O_3 с чистотой не хуже 99.5% смешивались, перетирались и прессовались в таблетки. При синтезе оксид Fe_2O_3 обогащался стабильным изотопом $^{57}Fe~(10\%)$. Образцы отжигались в области температур 850-930 °C с трехкратным перетиранием и прессованием в таблетки. Дополнительно образцы отжигались при 860 °C в течение 1 ч и затем закаливались на воздухе. Кристаллическая структура образцов исследовалась методом рентгенографии.

Измерения эффекта Мёссбауэра на ядрах ⁵⁷ Fe были выполнены в области температур 87-850 K в геометрии поглощения с использованием источника ⁵⁷ Co(Rh) и спектрометра MS1104em (НИИ физи-

¹⁾e-mail: pokatilov@mirea.ru

Рис. 1. Мёссбауэровские спектры на ядрах ⁵⁷Fe в мультиферроике Bi_{0.8}La_{0.2}FeO₃ при 87 K (a) и комнатной температуре (b) (экспериментальные точки). Сплошные линии – результаты обработки по программе DISTRI. Линии под мёссбауэровскими спектрами – разность между экспериментальными спектрами и восстановленными функциями распределений сверхтонких полей. Восстановленные функции распределения сверхтонких полей по программе DISTRI при 87 K (c) и комнатной температуре (d)

ки, г. Ростов-на-Дону). Обработка спектров проводилась по программе DISTRI (восстановление функции распределения магнитных сверхтонких полей P(H), квадрупольных сдвигов $P(\varepsilon)$ и сдвигов центра мёссбауэровского спектра $P(\delta)$), а для модельной расшифровки мёссбауэровских спектров использовалась программа SPECTR [8]. Когда эффект поглощения превышал 5–6%, корректировка экспериментального спектра на влияние толщины образца при поглощении гамма-квантов проводилась по методу, описанному в [9].

Рентгенографические исследования образца мультиферроика ${\rm Bi}_{0.8}{\rm La}_{0.2}{\rm FeO}_3$ при комнатной температуре показали, что он является однофазным с ромбической структурой и параметрами a = 5.596, b = 5.619 и c = 3.902 Å (в соответствии с данными [7]).

На рис.1 приводятся мёссбауэровские спектры исследуемого образца при 87К и комнатной температуре и результаты их обработки по программе DISTRI. Как видно из рис.1а и b, линии мёссбауэровского спектра оказываются узкими и имеют симметричную форму. С помощью программы DISTRI из мёссбауэровских спектров были восстановлены функции распределения магнитных сверхтонких полей P(H) (рис. 1с и d). Согласно данным ЯМР [7] ПСМС в мультиферроике Bi_{0.8}La_{0.2}FeO₃ отсутствует. Функции P(H), представленные на рис. 1с и d, имеют форму, характерную для однородной спиновой структуры, и совпадают с распределениями СТП, полученными методом ЯМР для Ві_{0.8}La_{0.2}FeO₃ [7]. Соответствующее максимуму в распределении P(H) при 87 К СТП на ядрах ⁵⁷ Fe равно $H = 543.6 \pm 0.2$ кЭ, а при комнатной температуре $H = 497.5 \pm 0.2$ кЭ. Заметим, что среднее СТП на ядрах ⁵⁷ Fe при 87 K в мультиферроике Bi_{0.8}La_{0.2}FeO₃ увеличилось по сравнению с ВіFeO3 на 3кЭ. Ширина распределений резонансных частот спектра ЯМР $\Delta \nu$ для соединения $\mathrm{Bi}_{0.8}\mathrm{La}_{0.2}\mathrm{FeO}_3$ при 77К составляет $\Delta \nu = 0.85 \,\mathrm{M}$ Гц или $6.2\,\mathrm{\kappa}$ Э[7]. Распределение СТП Р(Н), восстановленное из мёссбауэровских спектров для Bi_{0.8}La_{0.2}FeO₃ при 87К (рис. 1с), имеет ширину $\Delta P(H) = 6.5 \,\mathrm{k\Im}$. Форма и диапазон распределения

полей P(H), восстановленные из мёссбауэровского спектра, совпадают с формой и диапазоном спектра ЯМР на ядрах ⁵⁷ Fe для $Bi_{0.8}La_{0.2}FeO_3$ [7].

Для уточнения значений параметров сверхтонких взаимодействий была проведена модельная обработка мёссбауэровских спектров по программе SPECTR. Она показала, что спектры хорошо описываются одним секстетом, соответствующим одному состоянию ионов железа. Сдвиги δ центра мёссбауэровского спектра в мультиферроике ${\rm Bi}_{0.8}{\rm La}_{0.2}{\rm FeO}_3$ равны $\delta = 0.39 \pm 0.01$ мм/с при комнатной температуре и $\delta = 0.50 \pm 0.01$ мм/с при 87К. Значение сдвига центра мёссбауэровского спектра при комнатной температуре соответствует трехвалентному состоянию ионов железа в октаэдрических кислородных позициях.

На рис. 2 приводится температурная зависимость ширины мёссбауэровских спектров, измеренной на

Рис. 2. Температурные зависимости ширины мёссбауэровского спектра при температурах 87-825 K (a), 650-700 K (b) и 715-825 K (c)

полувысоте линии спектра (рассчитанной от максимума поглощения). Как видно из рис.2 в области температур 650–850К наблюдаются аномалии в температурной зависимости ширины W. Этот эффект при 677 ± 3 К (рис.2b) обусловлен магнитным переходом из антиферромагнитного в парамагнитное состояние. При переходе из парамагнитной в антиферромагнитную фазу ширина спектра W в области температуры Нееля $T_{\rm N}$ начитает резко увеличиваться за

Письма в ЖЭТФ том 94 вып. 9-10 2011

счет усиливающегося магнитного вклада. В области температур 760-825 К при уменьшении температуры обнаружен быстрый рост ширины W мёссбауэровского спектра при 773 ± 3 K (рис. 2c). В соответствии с результатами рентгенографии, магнитных и диэлектрических измерений в соединении Bi_{0.8}La_{0.2}FeO₃ в области температур 770-780К наблюдается переход из параэлектрической в сегнетоэлектрическую фазу (см., например, [1,10]). Таким образом, аномалия в температурной зависимости ширины спектра при $773 \pm 3 \,\mathrm{K}$ обусловлена сегнетоэлектрическим переходом с температурой Кюри $T_{
m C}\,=\,773\pm3\,{
m K}.$ По сравнению с $BiFeO_3$ [1] замещение ионов Bi^{3+} на La^{3+} в количестве 0.2 мол. % уменьшает температуру сегнето/параэлектрического перехода T_C почти на 350 К. Заметим, что для $BiFeO_3$ ниже T_C существует ромбоэдрическая, а для Bi_{0.8}La_{0.2}FeO₃ - ромбическая структура [7].

На рис. 3 приведены мёссбауэровские спектры исследуемого образца при температурах 680 К (а) (выше температуры Нееля) и 825 К (b) (выше температуры Кюри), а также восстановленные функции распределения сдвигов центра мёссбауэровского спектра $P_{CS}(\delta)$ (с) и квадрупольных сдвигов $P(\varepsilon)$ (d). Видно, что спектр, измеренный при 680К, имеет форму дублета (ширина спектра W = 0.72 мм/c). Спектр же, измеренный при 825 К, представляет собой уширенную одиночную линию с шириной $W = 0.54 \,\mathrm{mm/c}$ (при ширине источника 0.22 мм/с). Возникает вопрос о том, является ли этот спектр уширенным синглетом или дублетом с малым квадрупольным расщеплением. Для ответа на этот вопрос нами была восстановлена функция распределения сдвигов мёссбауэровских спектров $P_{CS}(\delta)$ (рис. 3с), которая позволяет получить распределение $P_{CS}(\delta)$ для всех синглетов, присутствующих в спектре, в широком диапазоне скоростей. Пара синглетов равной интенсивности, симметрично расположенных на шкале скоростей относительно их центра тяжести, соответствует одному дублету. Из распределения $P_{CS}(\delta)$ мы определяем наличие и количество таких пар синглетов и, следовательно, наличие и количество именно дублетов. В нашем эксперименте расстояние между пиками на $P_{CS}(\delta)$ соответствует квадрупольному расщеплению Q_S для дублета, где $Q_S = 2\varepsilon$. При этом га, соответствующая значению ε в максимуме интенсивности распределений квадрупольных сдвигов $P(\varepsilon)$ для дублета на рис. 3d. Из рис. 3c определяется сдвиг центра мёссбауэровского спектра δ как центр тяжести двух синглетов в распределении $P_{CS}(\delta)$. Величина этого сдвига совпадает со значением δ для дуб-

Рис. 3. Мёссбауэровские спектры на ядрах ⁵⁷ Fe в мультиферроике $Bi_{0.8}La_{0.2}$ FeO₃ при 680 K (a) и 825 K (b) (экспериментальные точки). Сплошные линии – результаты обработки по программе DISTRI. Линии под мёссбауэровскими спектрами – разность между экспериментальными спектрами и восстановленными функциями распределений квадрупольных сдвигов. Восстановленные функции распределения сдвигов центра мёссбауэровского спектра $P_{CS}(\delta)$ (c), квадрупольных сдвигов дублетов $P(\varepsilon)$ (d) и сдвигов центра тяжести дублетов $P_Q(\delta)$ (e)

лета, полученным из распределения $P_Q(\delta)$ (рис. 3е). Таким образом, анализ функций $P_{CS}(\delta)$ (рис. 3с) показал, что мёссбауэровские спектры при 680 и 825 К состоят из квадрупольного дублета с различным расщеплением. Из функции распределения квадрупольных сдвигов $P(\varepsilon)$ (рис. 3d) наглядно видно их резкое уменьшение (почти в два раза) при переходе через $T_{\rm C}$. Появление малого квадрупольного расщепления $Q_S = 2\varepsilon = 0.2$ мм/с при 825 К в параэлектрической фазе обусловлено локальными искажениями кубической решетки за счет отличия ионных радиусов лантана $(R({\rm La}^{3+}) = 1.36$ Å) и висмута $(R({\rm Bi}^{3+}) = 1.45$ Å) при кислородном окружении N = 12 [11].

На рис. 4 представлены температурные зависимости магнитных сверхтонких полей H (a), квадрупольных сдвигов ε (b) и сдвигов центра мёссбауэровского спектра δ (c). На рис. 4а приведена экспериментальная температурная зависимость H(T) для трехвалентных ионов железа, которая близка к идеальной функции Бриллюэна для спина S=5/2 и $T_{\rm N}==677\pm3\,{\rm K}.$

Как видно из рис. 4b, в области температур 650– 850 К наблюдаются аномалии в температурной зависимости квадрупольных сдвигов ε . При уменьшении температуры в области 760–825 К обнаружен быстрый рост квадрупольного сдвига при 768 ± 5 К, а в области T_N значения ε резко уменьшаются (почти до нуля). Температуры Нееля (T_N) и Кюри (T_C), определенные из температурных зависимостей ширины линии спектра и сверхтонких параметров (H и ε), в пределах ошибки совпадают. Таким образом, замещение ионов Bi³⁺ на La³⁺ в количестве 0.2 мол.% увеличивает температуру Нееля на 37 К и уменьшает температуру Кюри на 350 К по сравнению с BiFeO₃.

На рис.4с представлена температурная зависимость $\delta(T)$ сдвигов центра (СЦ мёссбауэровских спектров в области температур 87–850 К (в виде экспериментальных точек). Как известно, сдвиг центра мёссбауэровского спектра содержит два вклада: $\delta = \delta_I + C_D$, где δ_I – изомерный сдвиг, пропорциональный плотности *s*-электронов на ядрах Fe, C_D – допплеровский сдвиг второго порядка, который свя-

Рис. 4. Температурные зависимости сверхтонких полей H (экспериментальные точки и рассчитанная функция Бриллюэна для спина иона Fe³⁺ S = 5/2) (a), квадрупольных сдвигов ε (данные из восстановленных распределений квадрупольных сдвигов ε по программе DISTRI, черные точки – результаты модельной обработки спектров по программе SPECTR) (b) и сдвигов центра мёссбауэровского спектра δ (экспериментальные точки и рассчитанная линия для дебаевской модели) (c)

зан со среднеквадратичным смещением атомов и поэтому сильно зависит от температуры [12]. Предполагая, что в первом приближении фононный спектр описывается дебаевской моделью и принимая во внимание тот факт, что температурной зависимостью изомерного сдвига δ_I можно пренебречь [13], из температурной зависимости СЦ мёссбауэровского спектра мы определили температуру Дебая $\Theta = 431 \pm 12$ К, в мультиферроике Bi_{0.8}La_{0.2}FeO₃, имеющем ромбическую структуру. На рис. 4с сплошной линией представлена кривая, рассчитанная по дебаевской модели колебательного спектра резонансных ядер с учетом линейной зависимости СЦ δ от температуры. В перовските BiFeO₃ с ромбоэдрической структурой температура Дебая $\Theta = 340 \pm 10$ К [14]. Рост температуры Дебая при замещении ионов Bi на трехвалентные ионы La обусловлен изменением типа кристаллической структуры и, следовательно, ростом средней частоты колебаний фононов в поликристаллическом образце Bi_{0.8}La_{0.2}FeO₃.

Таким образом, как показали рентгенографические измерения, описанные в данной работе, при замещении ионов висмута на ионы лантана в мультиферроике $Bi_{0.8}La_{0.2}FeO_3$ присущая $BiFeO_3$ ромбоэдрическая кристаллическая структура изменяется на ромбическую. При исследовании этого мультиферроика методом мёссбауэровской спектроскопии обнаружено, что в нем отсутствует ПСМС и наблюдается однородная антиферромагнитная структура. Ионы Fe находятся в трехвалентном состоянии. Из температурных зависимостей ширины линии спектров и параметров сверхтонких взаимодействий определены температуры магнитного перехода ($T_{
m N}\,=\,677\pm3\,{
m K})$ и сегнетоэлектрического перехода ($T_{\rm C}=773\pm3\,{
m K}$), а также температура Дебая ($\Theta = 431 \pm 12~{
m K}$) для мультиферроика $\operatorname{Bi}_{0.8}\operatorname{La}_{0.2}\operatorname{FeO}_3$. Обнаружено, что T_{N} и Θ значительно увеличились, в то время как Т_С уменьшилась по сравнению с BiFeO3. Изменения значений температур переходов и температуры Дебая при замещении ионов висмута на лантан в количестве 0.2 мол. % обусловлены изменением ромбоэдрической решетки в BiFeO₃ на ромбическую в Bi_{0.8}La_{0.2}FeO₃.

Работа поддержана Российским фондом фундаментальных исследований (грант # 09-02-00072).

- 1. Ю. Н. Веневцев, В. В. Гагулин, В. Н. Любимов, *Сегнетомагнетики*, М.: Наука, 1982, 223 с.
- I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele. J. Phys. C: Solid State Phys. 15, 4835 (1982).
- 3. А.К. Звездин, А.П. Пятаков, УФН 174, 465 (2004).
- A. V. Zalessky, A. A. Frolov, T. A. Khimich et al., Europhys. Letter 50, 547 (2000).
- В. С. Покатилов, А. С. Сигов, А. О. Коновалова, Известия РАН, серия Физическая 74, 377 (2010).
- 6. В.С. Покатилов, А.С. Сигов, ЖЭТФ **137**, 498 (2010).
- А. В. Залесский, А. А. Фролов, Т. А. Химич, А. А. Буш, ФТТ 45, 134 (2003).
- В. С. Русаков, Мёссбауэровская спектроскопия локально-неоднородных систем, Алматы, 2000, 430 с.
 М. А. Ничев, Питерия 2, 2020, 622, 572 (2005).
- 9. М.А. Чуев, Письма в ЖЭТФ 82, 573 (2005).
- 10. Ю.Е.Рогинская и др., Кристаллография 8, 610 (1963).
- 11. R. D. Shannon, Acta Cryst. A 32, 751 (1976).
- J. Cieslak et al., J. Phys. Condens. Matter. 17, 6889 (2005).
- 13. K. N. Shrivastava, Hyperfine Interact. 24–26, 817 (1985).
- 14. C. Blaauw et al., J. Phys. C.: Solid State Phys. 6, 1422 (1973).