Наблюдение нескольких сверхпроводящих щелей в инфракрасных спектрах отражения Ba(Fe_{0.9}Co_{0.1})₂As₂

Ю. А. Алещенко⁺¹⁾, А. В. Муратов⁺, В. М. Пудалов⁺, Е. С. Жукова^{*×}, Б. П. Горшунов^{*×}, Ф. Курт^{°2)}, К. Айда^{°2)}

+Физический институт им. Лебедева РАН, 119991 Москва, Россия

* Институт общей физики им. Прохорова РАН, 119991 Москва, Россия

 $^{\times}$ Московский физико-технический институт, 141700 Долгопрудный, Россия

° IFW Dresden, Institute for Metallic Materials, D-01171 Dresden, Germany

Поступила в редакцию 20 октября 2011 г.

Представлены результаты измерений спектров инфракрасного отражения пленки высокотемпературного сверхпроводника на основе железа состава $Ba(Fe_{0.9}Co_{0.1})_2As_2$. Близость к единице коэффициента отражения на частотах ω , меньших $2\Delta/h$ (2Δ – сверхпроводящая щель, h – постоянная Планка), свидетельствует о том, что в этом соединении реализуется $s^{+/-}$ или $s^{+/+}$ симметрия сверхпроводящего параметра порядка. Продемонстрировано формирование нескольких сверхпроводящих щелей в спектрах инфракрасного отражения $Ba(Fe_{0.9}Co_{0.1})_2As_2$ при температурах ниже T_c .

Исследования свойств недавно открытых высокотемпературных сверхпроводников (ВТСП) на основе железа [1] и их сравнение со свойствами купратных ВТСП дают информацию, необходимую для понимания механизмов высокотемпературной сверхпроводимости. Энергетическая щель 2 в спектре квазичастичных возбуждений является одной из важнейших характеристик сверхпроводника. В соединениях на основе железа экспериментальные исследования этого параметра, а также механизмов сверхпроводимости затрудняются многозонностью их энергетического спектра. В этих материалах имеются две дырочные зоны в точке Г зоны Бриллюэна и две электронные зоны в точках $X(0, \pm \pi)$. Поэтому можно ожидать существования нескольких типов сверхпроводящих (СП) конденсатов с различными величинами щелей [2-4].

Сложностью энергетического спектра сверхпроводников на основе железа, отличием качества и фазового состава исследованных ранее образцов, значительными экспериментальными погрешностями, а также разной чувствительностью различных методик к различным щелям можно объяснить большой разброс в полученных к настоящему времени экспериментальных значениях отношения величины сверхпроводящей щели к критической температуре: $2\Delta/k_{\rm B}T_c = 1.6-10~(k_{\rm B}-$ постоянная Больцмана) [5-12]. До сих пор нет также надежных данных о типе симметрии параметра порядка в этих материалах. В наиболее широко обсуждаемой $s^{+/-}$ -модели сверхпроводимости [13] считается, что СП-конденсаты электронных и дырочных зон железосодержащих ВТСП обладают сверхпроводящими параметрами порядка *s*-типа с температурной зависимостью, описываемой теорией Бардина-Купера-Шриффера (БКШ), и фазами противоположного знака. В различных экспериментальных работах сообщалось о наблюдении СП-щели как с симметрией *s*-типа [14, 15], так и с полюсами на поверхности Ферми, в которых фаза параметра порядка меняет знак, т.е. с симметрией *d*-типа [8, 16–18].

Спектроскопия в инфракрасном (ИК) диапазоне является прямым методом получения информации об энергетическом спектре носителей заряда в сверхпроводниках. В отличие от фотоэмиссии с угловым разрешением и туннельной спектроскопии вклад в ИК-отражение вносит относительно более толстый слой материала, приближая наблюдаемые свойства к свойствам объемного материала. Однако при исследовании этим методом пниктидов железа возникают трудности, связанные с тем, что характерные значения СП-щелей (при $T_c \sim 20{-}55\,{
m K}$) лежат в далеком ИК и терагерцовом диапазонах, где эффективность ИК фурье-спектрометров резко падает. Нами выполнены исследования ИК-спектров отражения для пленки $Ba(Fe_{0.9}Co_{0.1})_2As_2$ в широком диапазоне длин волн и температур. Высокая светосила используемого в наших исследованиях фурье-спектрометра Bruker IFS 125HR и высокая чувствительность приемников излучения позволили преодолеть указанные трудности

¹⁾e-mail: yuriale@sci.lebedev.ru

²⁾ F. Kurth, K. Iida.

и провести измерения спектров ИК-отражения, в том числе и в далекой ИК-области.

Пленка площадью $4 \times 9 \text{ мм}^2$ осаждалась на подложку (La,Sr)(AI,Ta)O₃ путем распыления мишени Ba(Fe_{0.9}Co_{0.1})₂As₂ излучением KrF лазера с длиной волны 248 нм в условиях сверхвысокого вакуума [19]. Пленка имела зеркальную поверхность. По данным атомно-силовой микроскопии ее шероховатость характеризовалась среднеквадратичным отклонением менее 12 нм. Толщина пленки составляла d = 90 нм. Она контролировалась кварцевыми весами в процессе напыления и впоследствии определялась с помощью атомно-силовой микроскопии и эллипсометрии. Фазовый состав пленки определялся с помощью рентгеноструктурного анализа и энергодисперсионной спектроскопии.

Измерения удельного сопротивления на постоянном токе четырехзондовым методом показали, что T_c образца составляет 20К. При этом ширина перехода равна 2К (начало перехода при 22К). Спектры ИКотражения с разрешением 1 см⁻¹ измерялись в диапазоне 14000-8 см⁻¹ при использовании золотого зеркала в качестве образца сравнения. В качестве детекторов в зависимости от регистрируемого диапазона применялись охлаждаемые жидким азотом фотоприемники InSb (ближняя ИК-область), HgCdTe (средняя ИК-область) и охлаждаемый жидким гелием кремниевый болометр (дальний ИК-диапазон). Для измерений в интервале температур 5-300К образец помещался в криостат $Optistat^{CF-V}$ фирмы Oxford Instruments с окнами из ZnSe и полиэтилена. В измерениях в далеком ИК-диапазоне использовались клиновидные окна из пластика ТРХ. Для улучшения соотношения сигнал/шум для каждых спектрального диапазона и температуры проводилось до 120 серий измерений по 10 сканирований с последующим усреднением.

На рис.1 представлены спектры ИК-отражения пленки $Ba(Fe_{0.9}Co_{0.1})_2As_2$, измеренные при температурах 300, 200, 100, 20 и 5 К. Малая толщина пленки и ее невысокая проводимость не позволили применить для анализа спектров процедуру Крамерса-Кронига с целью расчета оптической проводимости и диэлектрической проницаемости. Тем не менее некоторые важные выводы можно сделать и непосредственно из анализа спектров отражения.

В целом полученные спектры хорошо согласуются с полученными ранее ИК-спектрами пленок $Ba(Fe_{0.9}Co_{0.1})_2As_2$ из той же партии [20], в том числе и в далекой ИК-области, для которой в работе [20] спектры отражения были рассчитаны из данных прямых измерений терагерцовых спектров оп-

тической проводимости и диэлектрической проницаемости. В области волновых чисел выше 1000 см^{-1} проявляется широкая полоса, обусловленная межзонными переходами с максимумами в области 4400 и 20800 см⁻¹ [20]. Провал в области 1000 см⁻¹ может быть объяснен резонансным поглощением. Аналогичная особенность наблюдалась и ранее в спектрах ИК-отражения Ba(Fe_{1-x}Co_x)₂As₂ [12, 21, 22], а также нелегированного BaFe₂As₂ [23, 24]. Она может быть связана с внутризонным переходом [25, 26]. Ряд относительно узких пиков в области 100– 1000 см⁻¹ обусловлен фононными полосами в подложке (La,Sr)(AI,Ta)O₃.

Наши измерения позволили выявить дополнительную особенность в спектрах отражения при \sim 900 см⁻¹ (рис. 1), природа которой пока не ясна. В об-

Рис. 1. Спектры ИК-отражения пленки Ва(Fe_{0.9}Co_{0.1})₂As₂

ласти ниже 30 см⁻¹ в спектрах видны интерференционные осцилляции, возникающие вследствие переотражений внутри окон криостата. Этот аппаратный эффект, однако, не мешает анализу спектров.

Рост коэффициента отражения $R(\omega)$ при волновых числах, меньших 1000 см^{-1} , вызван коллективизированными электронами и дырками в различных зонах $\text{Ba}(\text{Fe}_{0.9}\text{Co}_{0.1})_2\text{As}_2$. Из рис. 1 следует сильная температурная зависимость коэффициента отражения $R(\omega)$ при изменении температуры от 300 до 100 K. В то же время спектры, измеренные при 30– 5 K, оказались практически совпадающими в области больших волновых чисел (выше 300 см^{-1}). Различие между ними проявляется только в области малых волновых чисел. Видно, что при температурах ниже температуры перехода $\text{Ba}(\text{Fe}_{0.9}\text{Co}_{0.1})_2\text{As}_2$ в сверхпроводящее состояние наблюдается увеличение коэффициента отражения пленки до величин, весьма близких к 100%. Это является убедительным свидетельством формирования сверхпроводящей энергетической щели вследствие образования СП-конденсата.

Открытие при $T < T_c$ щели в электронной плотности состояний является фундаментальной особенностью сверхпроводящего состояния. Соответственно для сверхпроводящего состояния с изотропной СП энергетической щелью (s-тип симметрии параметра порядка) коэффициент отражения при температуре $5 \, {
m K} \ll T_c$ достигает величин, близких к100%, в области волновых чисел, меньших $2\Delta/hc~(c-$ скорость света). Форма спектров $R(\omega)$ на рис.1 становится почти плоской в области волновых чисел, меньших $60\,{\rm cm^{-1}}$, напоминая форму для сверхпроводника с sтипом спаривания. При волновых числах, больших $2\Delta/hc$, коэффициент отражения уменьшается, что приводит к формированию характерного пика на частотной зависимости отношения коэффициентов отражения в сверхпроводящем и нормальном состояниях, $R(T < T_c)/R(T \geq T_c)$. Спад амплитуды этого максимума в области малых волновых чисел обусловлен поглощением ВТСП при энергиях излучения, меньших величины сверхпроводящей щели. В многозонном сверхпроводнике соответствующие особенности, связанные с несколькими щелями, перекрываются, что затрудняет определение величин щелей.

На рис. 2 в полулогарифмическом масштабе приведена частотная зависимость отношения

Рис. 2. Спектры ИК-отражения пленки Ва(Fe_{0.9}Co_{0.1})₂As₂ при различных температурах, нормированные на спектры, измеренные при 30 К

 $R(T)/R(30 \,\mathrm{K})$, где R — коэффициенты отражения пленки $\mathrm{Ba}(\mathrm{Fe}_{0.9}\mathrm{Co}_{0.1})_2\mathrm{As}_2$, при температурах T = 5, 20 и 100 K. Проведенные для наглядности

Письма в ЖЭТФ том 94 вып. 9-10 2011

пунктирные линии изображают кусочно-линейную аппроксимацию нормированного спектра в далекой ИК-области на правом пологом крыле пика. На частотной зависимости R(5 K)/R(30 K) хорошо заметны изломы в областях $\sim 43\,{
m cm^{-1}}$ и $23.5\,{
m cm^{-1}}$, а также более слабая особенность при 29 см⁻¹. На зависимостях $R(20\,\mathrm{K})/R(30\,\mathrm{K})$ и $R(100\,\mathrm{K})/R(30\,\mathrm{K})$ этот пик не проявляется, что позволяет связать найденные особенности с проявлением сверхпроводящих щелей 2∆ с энергиями 5.3 мэВ (43 см⁻¹), 3.6 мэВ (29 см⁻¹) и 2.9 мэВ (23.5 см⁻¹). Подобные особенности на зависимости R_s/R_n для сверхпроводника с симметрией параметра порядка s-типа должны проявляться в виде ступенек. Однако конечная температура измерений и наложение особенностей, связанных с разными щелями, приводят к их размытию. Следует отметить, что в предыдущих измерениях авторов (БГ, FK, KI), выполненных методом терагерцовой спектроскопии [20] на образцах из той же партии, было обнаружено обращение оптической проводимости в нуль в области 30 см⁻¹ при температуре 5 К, свидетельствующее об открытии СП-щели. Поэтому слабая особенность при 29 см⁻¹ в спектре на рис. 2 была интерпретирована нами как проявление СП-щели.

Само проявление СП-щелей в спектрах отражения в далекой ИК-области свидетельствует о том, что сверхпроводимость в исследованном образце $Ba(Fe_{0.9}Co_{0.1})_2As_2$ соответствует "грязному" пределу, т.е. частота рассеяния носителей заряда удовлетворяет соотношению $1/ au > 2\Delta$ (au - время релаксации). В этом случае спектральный вес коллективизированных носителей (конденсат) в спектрах ИК-отражения и оптической проводимости распределяется в широкой спектральной области, однако значительная часть конденсата сконцентрирована ниже энергий порядка 2Д. В "чистом" пределе почти весь спектральный вес, обусловленный конденсатом, сосредоточен при энергиях, меньших 2Δ , поэтому в области 2Δ не наблюдается заметных изменений при переходе в сверхпроводящее состояние.

Полученным нами значениям СП-щели $2\Delta = 2.9$, 3.6 и 5.3 мэВ отвечают отношения $2\Delta/k_{\rm B}T_{\rm c} \approx 1.6$, 2.0 и 2.9 соответственно. Эти значения попадают в интервал данных $2\Delta/k_{\rm B}T_c = 1.6$ –10, приводимый в литературе для ${\rm Ba}({\rm Fe}_{1-x}{\rm Co}_x)_2{\rm As}_2$ [5–12]. Представленные результаты являются первым наблюдением нескольких сверхпроводящих щелей в соединении состава ${\rm Ba}({\rm Fe}_{0.9}{\rm Co}_{0.1})_2{\rm As}_2$.

В заключение отметим, что нами исследованы спектры ИК-отражения тонкой сверхпроводящей пленки пниктида железа состава $\operatorname{Ba}(\operatorname{Fe}_{1-x}\operatorname{Co}_x)_2\operatorname{As}_2$ с $T_c = 20$ К в широких спектральном и температурном диапазонах. Поведение спектров ИК-отражения $R(\omega)$ в дальнем ИК-диапазоне при $T < T_c$ указывает на спаривание *s*-типа в исследованном материале. Обнаружено проявление трех сверхпроводящих щелей в спектрах ИК-отражения при температурах ниже T_c : $2\Delta = 2.9$, 3.6 и 5.3 мэВ ($2\Delta/k_{\rm B}T_c \approx 1.6$, 2.0 и 2.9). Возможность обнаружения СП-щелей в ИК-спектрах указывает на то, что в исследованном материале реализуется случай "грязного" предела.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, Президиума Российской академии наук, Министерства образования и науки Российской Федерации, Немецкого исследовательского фонда (номер проекта НА 5934/3-1).

- Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
- 2. D.J. Singh, Physica C 469, 418 (2009).
- K. Kuroki, H. Usui, S. Onari et al., Phys. Rev. B 79, 224511 (2009).
- D. V. Evtushinsky, D. S. Inosov, V. B. Zabolotnyy et al., Phys. Rev. B 79, 054517 (2009).
- K. Terashima, Y. Sekiba, J.H. Bower et al., Proc. National Acad. Sci. U.S.A. 106, 7330 (2009).
- H. Ding, P. Richard, K. Nakayama et al., Europhys. Lett. 83, 47001 (2008).
- F. Hardy, T. Wolf, R. Fisher et al., Phys. Rev. B 81, 060501(R) (2010).
- T. J. Williams, A. A. Aczel, E. Baggio-Saitovich et al., Phys. Rev. B 80, 094501 (2009).
- P. Szabó, Z. Pribulová, G. Pristáš et al., Phys. Rev. B 79, 012503 (2009).

- M. Yashima, H. Nishimura, H. Mukuda et al., J. Phys. Soc. Jpn. 78, 103702 (2009).
- K. Matano, Z. Li, G. L. Sun et al., Europhys. Lett. 87, 27012 (2009).
- K. W. Kim, M. Rössle, A. Dubroka et al., Phys. Rev. B 81, 214508 (2010).
- I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008).
- P. Samueli, Z. Pribylova, P. Szabo et al., Physica C 469, 507 (209).
- Yi. Yin, M. Zech, T. L. Williams et al., Phys. Rev. Lett. 102, 097002 (2009).
- R. T. Gordon, N. Ni, C. Martin et al., Phys. Rev. Lett. 102, 127004 (2009).
- Y. Machida, K. Tomokuni, T. Isono et al., J. Phys. Soc. Jpn. 78, 073705 (2009).
- Y. Machida, K. Tomokuni, T. Isono et al., Nature (London) 459, 64 (2009).
- K. Iida, J. Hänish, R. Hühne et al., Appl. Phys. Lett. 95, 192501 (2009).
- B. Gorshunov, D. Wu, A. A. Voronkov et al., Phys. Rev. B 81, 060509(R) (2010).
- A. Dusza, A. Lucarelli, F. Pfuner et al., Europhys. Lett. 90, 37005 (2010).
- E. van Heumen, Y. Huang, S. de Jong et al., Europhys. Lett. 93, 37002 (2011).
- M. Nakajima, S. Ishida, K. Kihou et al., Phys. Rev. B 81, 104528 (2010).
- W.Z. Hu, J. Dong, G. Li et al., Phys. Rev. Lett. 101, 257005 (2008).
- A. Kutepov, K. Haule, S. Y. Savrasov, and G. Kotliar, Phys. Rev. B 82, 045105 (2010).
- Z. P. Yin, K. Haule, and G. Kotliar, Nature Phys. 7, 1 (2010).