
Pis'ma v ZhETF, vol. 94, iss. 10, pp. 823 { 827 c 2011 November 25Abrikosov vortex escape from a columnar defect as a topologicalelectronic transition in vortex coreA. S.Mel'nikov1), A. V. SamokhvalovInstitute for Physics of Microstructures RAS, 603950 Nizhny Novgorod, RussiaSubmitted 20 October 2011We study microscopic scenario of vortex escape from a columnar defect under the inuence of a transportcurrent. For defect radii smaller than the superconducting coherence length the depinning process is shownto be a consequence of two subsequent topological electronic transitions in a trapped vortex core. The �rsttransition at a critical current jL is associated with the opening of Fermi surface segments corresponding tothe creation of a vortex{antivortex pair bound to the defect. The second transition at a certain current jd > jLis caused by merging of di�erent Fermi surface segments, which accompanies the formation of a freely movingvortex.The study of magnetic and transport properties oftype-II superconductors in the presence of arti�cial pin-ning centers is known to be an important direction inthe physics of vortex matter [1]. An obvious �rst stepto understanding of the pinning related phenomena isassociated with the evaluation of the individual pinningforce acting on a vortex in the presence of a defect. Var-ious approaches used for such analysis are based on theobservation that a defect attracts the vortex in orderto avoid loss of condensation energy in the core and todecrease a kinetic energy due to perturbations of screen-ing currents and magnetic �eld induced by the defect[2{5]. Close to the critical temperature Tc both thesee�ects can be described within the Ginzburg{Landau(GL) theory valid for large length scales well exceedingthe superconducting coherence length � at zero temper-ature.Such long wavelength approach is, of course, no morevalid for low temperatures T � Tc and small defectsize a . �. Microscopic approach for calculation ofthe pinning energy and appropriate modi�cation of theGL-functional for a particular case of a small point im-purity with the scattering cross section �sc � �2 havebeen previously studied in [6, 7]. Considering the micro-scopic theory one should take into account the behaviorof the subgap fermionic states bound to the vortex corewhich are known to determine both the structure anddynamics of vortex lines in the low temperature limit.These subgap states are known to form the so-calledanomalous spectral branch crossing the Fermi level. Forwell separated vortices the behavior of the anomalousbranches can be described by the Caroli{de Gennes{Matricon (CdGM) theory [8]: for each individual vortexthe energy "0(�) of subgap states varies from ��0 to1)e-mail: melnikov@ipm.sci-nnov.ru

+�0 as one changes the angular momentum � de�nedwith respect to the vortex axis. Here, �0 is the super-conducting gap value far from the vortex axis. At smallenergies j"j � �0 the spectrum is a linear function of�: "0(�; k?) ' ��~!, where ~! � �0 ln�=(k?�) is theinterlevel spacing, � = ~VF=�0, k2? = k2F � k2z , kz isthe momentum projection on the vortex axis, kF andVF are the Fermi momentum and velocity, respectively.The logarithmic factor with � � �0=T appears at lowtemperatures due to the so-called Kramer{Pesch e�ect[9, 10]. Neglecting for T � ~! the quantization of theangular momentum � one can consider the anomalousbranch to cross the Fermi level at � = 0 for all orien-tations of the Fermi momentum kF. Thus, in the space� � kF we obtain a Fermi surface (FS) for excitationslocalized within the vortex core (see [11] for review).Changing magnetic �eld or transport current we canget switching between di�erent vortex states which isaccompanied by the changes in the FS-topology. Suchtopological transitions in quasiparticle spectra of vortexsystems are similar to the well-knownLifshits transitionswhich occur in the band spectra of metals [12, 13]. Onecan separate two generic examples of such transitions invortex matter: 1) opening of FS-segments correspond-ing to the creation of vortex-antivortex pairs [14, 15];2) merging and reconnection of di�erent FS-segmentsvia the Landau{Zener tunneling [16, 15]. The basicproperties of vortex matter such as pinning and trans-port characteristics, heat transport in the vortex stateand peculiarities of the local density of states should bestrongly a�ected by these changes in the FS-topology.The goal of this Letter is to suggest a theory of topolog-ical electronic transitions which occur in a pinned vortexcore under the inuence of transport current.The mechanism of these transitions is closely relatedto the e�ect of elastic scattering on the CdGM-levels.�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 9 { 10 2011 823



824 A. S.Mel'nikov, A. V. SamokhvalovResulting modi�cation of the anomalous spectral branchis noticeable even for impurity atoms introduced in avortex core [17] and becomes much more pronouncedprovided we consider defects of the size well exceed-ing the Fermi wavelength. The absence of the FS isa hallmark of a vortex pinned by an insulating colum-nar defect and it is natural to expect that vortex depin-ning should be accompanied by the FS-formation. Fora vortex line trapped by such defect the subgap spec-trum has been analyzed recently within the quasiclassi-cal approach in [18]. For rather large angular momentaj�j > �a = k?a quasiclassical trajectories of electron-hole excitations do not experience reection at the defectsurface and, thus, the subgap spectrum coincides withthe CdGM one. In the opposite case j�j � �a the nor-mal reection of trajectories at the defect destroys thelow energy part of CdGM spectral branch: with the de-crease in j�j below the threshold value �a the energy ofthe subgap bound state rapidly approaches the super-conducting gap �0 (see Fig. 1). Thus, contrary to the
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e0–D0Fig. 1. Di�erent types of quasiclassical trajectories (a) andspectrum of subgap states (b) for a vortex pinned by thedefectCdGM-case the subgap spectral branch of the pinnedvortex does not cross the Fermi level: there appears a

minigap�m(a) � j"0(kFa; kF)j in the quasiparticle spec-trum. The spectral branch "a for trajectories touchingthe defect can be approximated by vertical lines passingfrom ��m to ��0 for � = ��a (see Fig. 1b).In this Letter we propose a microscopic scenario ofvortex escape from a columnar defect of a radius asmaller than the coherence length � under the inuenceof an external supercurrent j = ensV applied perpen-dicular to the vortex axis (Fig. 1). The transport super-current results in a Doppler shift "d = (~k � V) of thequasiparticle energy and the subgap spectrum takes theform: ~"(�; k?; �p) = "(�; k?) + ~k?V cos �p; (1)where " = ��0 sign� for quasiparticles with j�j < �aand " = "0 for quasiparticles with j�j > �a. Here, thequasiparticle momentum k = k?(cos �p; sin �p) de�nesthe trajectory orientation angle �p in the (x; y)-planeand V = V x0. The depinning process can be viewedas two subsequent topological electronic transitions inthe vortex core which restore the anomalous spectralbranch crossing the Fermi level and repair the FS. The�rst transition at the critical current jL = ensVL is asso-ciated with the opening of separate segments of the FSwhich appear when the Doppler-shifted branch of thequasiparticle spectrum crosses the Fermi level and theminigap in the quasiparticle spectrum vanishes:V & VL = �m(a)=~kF: (2)The latter condition coincides, in fact, with the famousLandau criterion of superuidity [19]. The correspond-ing critical current density can be expressed via the de-pairing current density jc = ek2F�0=3�2~ and CdGM-spectrum: jL = jc j"0(kFa; kF)j=�0 � jc: (3)Considering the zero temperature limit and assuminga � � we obtain the following expressions for the criti-cal velocity and current:VL = �0a ln�=~kF�; jL = jc(a=�) ln�� jc; (4)where � � �=a. Taking ~" = 0 in Eq. (1) we �nd theequation de�ning FS-segments in the (�; �p) plane:"0(�; k?) = �~k?V cos �p; j�j > �a: (5)These segments are shown in Fig. 2 by solid lines in thelimit a � � when "0(�; k?) = �~!�. The ends of thesegments are joined by the lines � = ��a which corre-spond to the spectral branch "a. The direction of quasi-particle trajectory precession along the resulting closed�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 9 { 10 2011
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q pp /Fig. 2. Schematic plot of Fermi surface segments in the(�; �p)-plane for VL < V � Vd (solid blue line) and V > Vd(dashed red line)classical orbits in the �� �p plane is determined by theHamilton equation: ~ @�p=@t = @~"=@�. The formationof FS-segments is obviously associated with the appear-ance of superconducting phase singularities outside thecolumnar defect.We now proceed with the analysis of the structureof a resulting vortex state bound to the defect. For thesake of simplicity hereafter we put k? = kF which is ap-propriate for strongly anisotropic layered material withvortex lines oriented along the anisotropy axis. One canseparate two contributions to the gap function �(r; �)in the self-consistency equation: 1) the term �1 associ-ated with the subgap states localized within the vortexcore; 2) the term �2 which is de�ned by the quasipar-ticle states with large energies " & �0. We introducehere the polar coordinate system (r; �) in the plane per-pendicular to the vortex axis and the origin chosen atthe cylindrical defect center (see Fig. 1). At rather lowtemperatures the term �2 is only weakly a�ected bythe transport current j � jc since the correspondingDoppler shift is much smaller than the superconductinggap �0. On the contrary, the �rst contribution to thegap is strongly modi�ed in the presence of a transportcurrent provided the Doppler shift exceeds the minigap�m(a). Our further calculations of the current inducedcorrection to the term �1(r; �) are based on a semiclas-sical version of the self-consistency equation (see [20]):��1(r; �) = �b4i 2�Z0 d�p ei�p (sign~"� sign ") ; (6)where "(�) (~"(�; �p)) is the subgap spectrum in the ab-sence (presence) of transport current, � = kFr sin(�p �� �), and �b � �0 is the amplitude of the gap value

contribution coming from the CdGM spectral branch.Here we neglect the coordinate dependence of normal-ized electron- and hole-like wavefunctions at the scaler � a � � and consider the zero temperature limit.Close to the threshold velocity VL the spectrum ~" can beconsidered perturbatively in the form (1) with k? = kF.Note that here we restrict ourselves to the small �limit assuming j � jc. For small superuid velocitiesV � VL, the gap function �1 = �bei� is undisturbed(��1 = 0). Otherwise, if V > VL, the Doppler shiftresults in qualitative changes in the gap function distri-bution. A resulting piecewise regular gap function�1(r; �) = j�1j exp(i�) = �b ei� + ��1(r; �)is de�ned in a set of regions shown in Fig. 3:�1(r; �) = �bei�8>>>><>>>>:1; in A or C ;1� 2pr2 � a2=r; in B ;1� ei�r + e�i�0 ; in D ;1� e�i�r + e�i�0 ; in E ; (7)where sin�r = ar ; sin�0 = r0 cos �pr2 + 2r0r sin � + r20 ;and r0 = V=!. By dashed lines in Fig. 3 we also showschematically the distribution of the superconductingphase gradient r� around the defect. One can clearly
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Fig. 3. Schematic distribution of the superconducting phasegradient r� (dashed lines) for a bound vortex con�gura-tionobserve strong changes in topology of the phase � dis-tribution caused by the superow: there appear a phase7 �¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 9 { 10 2011



826 A. S.Mel'nikov, A. V. Samokhvalovsingularity at the point S (x = 0; y = �r0) and the lineL (r = 2a=p3) of zeros of the superconducting order pa-rameter �1 in the region B (see Fig. 3). The singularityat the point S has the same vorticity as the initial vortexcaptured by the defect. With an increase in the super-�uid velocity V this singularity moves away from thedefect. One can see that the modi�cation of the phase �distribution shown in Fig. 3 corresponds to the formationof a bound vortex-antivortex pair. Note that the vortexand antivortex positions found here coincide with the po-sitions of the phase singularities of a total gap functionsince the amplitude of the second part of the gap func-tion �2 is rather small: j�2(r � r0)j � �0r0=� � �b.Certainly well above the threshold velocity VL thegap pro�le and stable vortex con�guration should be de-termined from the self-consistent procedure taking intoaccount of contribution of delocalized excitations. Itis natural to expect that the instability of the boundvortex state and appearance of a freely moving vortexshould be accompanied by the formation of a contin-uous anomalous branch connecting the energies below��0 and above +�0. It is this branch which providesnecessary conditions for spectral ow through the en-ergy gap and, thus, for energy dissipation during thevortex escape from the defect. The obstacles on the wayof quasiparticle ow through the gap could be removedprovided the FS-segments would merge and reconnect toform a cosine curve �(�p) typical for a free vortex witha continuous anomalous spectral branch (compare solidand dash lines in Fig. 2). This transformation causestopological changes in FS-geometry because new cosineFS is open and can not be contracted to a point by con-tinuous transformations. Correspondingly, one can sug-gest three obvious scenarios of destruction of the boundvortex con�guration: �rst, the FS-segments can mergeforming an open FS due to quantum mechanical tunnel-ing; second, the spectral ow through the energy gapcan occur due to the impurity scattering between di�er-ent Fermi surface segments; third, the free vortex canbe formed when the Doppler shift reaches the gap value,i.e., the current density approaches the depairing one.The �rst scenario can be realized due to the Landau{Zener tunneling between classical orbits and can be un-derstood within the quantum mechanical picture basedon the commutation relation for canonically conjugatedvariables � and �p: [�̂; �̂p] = �i. Here we use squarebrackets to denote a commutator of two operators. Thee�ciency of this tunneling is determined by the ratioof the distance 2�a between the orbits to the angularmomentum uncertainty ��. The latter value can be es-timated from the uncertainty principle 4�4�p � 1 andthe equation � = k?V cos �p=! describing the classical

orbit for small � values. Considering the trajectorieswith �p close to ��=2 we �nd: �� = k?V��p=! and�� �pk?V=!. Thus, Landau{Zener tunneling resultsin the merging of two FS-segments provided the condi-tion �a < pk?V=! is ful�lled. This second transitionin the spectrum accompanied by the change in the Fermisurface topology occurs at the critical velocity and cur-rent given by the relations:Vd = kF!a2; jd = jc(kFa2=�) ln� = kFajL � jL: (8)For j > jd the FS is described by the Eq. (5) for all� values (see dashed line in Fig. 2) and correspondsto a Doppler-shifted spectrum of a free vortex: ~" == �~!� + ~kFV cos �p for j�j � kF�. The continuouspath for the quasiparticle spectral ow from the ener-gies below ��0 to the ones above +�0 is now restoredproviding conditions for a dissipative vortex motion.Second scenario of the recovering such continuouspath through the gap is associated with impurity scatter-ing. The scattering rate 1=�s between the quasiparticlestates at di�erent FS-segments shown in Fig. 2 shouldbe reduced compared to the impurity scattering rate1=� in a normal metal due to the small size ��p of FS-segments in the phase plane �� �p: 1=�s � ��p=� , wherecos(��p=2) = !a=V . Provided the scattering rate 1=�sbecomes comparable with the minigap �m = kFa ~!for a pinned vortex the FS-segments can be no moreconsidered as isolated ones. This condition imposesa restriction on the size of the isolated FS-segments��p < ��max = �m�=~ < � and gives us an estimatefor the upper critical velocity and current which destroythe bound vortex state:Vd = VLcos(��max=2) ; jd = jLcos(��max=2) ; (9)where the constant  is of the order unity. Note that inthe limit �m�=~ > � the impurity scattering e�ect isnegligible and the depinning current density is given bythe Eq. (8). Let us also emphasize that the critical cur-rent of vortex depinning can not exceed the depairingone. Thus, Eqs. (8), (9) are valid only for jd < jc, i.e.,for rather small size of the defect. In the clean limit, e.g.,this restriction on the size reads: a � p�=kF � �. Forlarger defect radii the depinning current density shouldsaturate at the jc value. The resulting schematic depen-dencies of critical current densities vs the defect radiusa are shown in Fig. 4 for clean (a) and dirty (b) limits.One can see that the unusual bound vortex state nearthe defect can be observed only for rather clean sampleswith �0�=~ � 1. In the dirty case for �0�=~ � 1 bothcritical current densities jL and jd coincide. The de-pinning current estimate in this limit can be also found�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 9 { 10 2011



Abrikosov vortex escape from a columnar defect : : : 827
(a)

(b)

jd

jd

jL

jL

1
a/x

j
j/
c

1

0

1

0Fig. 4. Schematic dependency of critical current densitiesvs the defect radius a for clean (a) and dirty (b) limitsfollowing the approach developed in [6, 7] for the pinningon impurities with small scattering cross section.To sum up, we have developed a microscopic de-scription of the two-stage scenario of vortex depinningfrom small size columnar defect and predict the forma-tion of stable vortex { antivortex con�gurations boundto the defect at intermediate transport current densi-ties. The lower critical current density corresponds tothe formation of vortex{antivortex state and should de-termine rf nonlinear response of vortex system at rathersmall transport current amplitudes. The upper criticalcurrent density jd corresponds to the destruction of thebound vortex con�guration around the defect and shoulddetermine the depinning transition at dc currents.The authors are thankful to Mike Silaev for manyhelpful discussions. This work was supported, in part,by the Russian Foundation for Basic Research, RussianAgency of Education under the Federal Program \Sci-

enti�c and educational personnel of innovative Russia"in 2009{2013, and European IRSES program SIMTECH(contract #246937).1. G. Blatter, M. V. Feigel'man, V.B. Geshkenbein et al.,Rev. Mod. Phys. 66, 1125 (1994).2. G. S. Mkrtchyan and V.V. Shmidt, Zh. Eksp. Teor. Fiz.61, 367 (1971) [Sov. Phys. JETP 34, 195 (1972)].3. A. Buzdin and D. Feinberg, Physica C 256, 303 (1996).4. A. Buzdin and M. Daumens, Physica C 294, 257 (1998).5. H. Nordborg and V.M. Vinokur, Phys. Rev. B 62, 12408(2000).6. E.V. Thuneberg, J. Kurkijarvi, and D. Rainer, Phys.Rev. Lett. 48, 1853 (1982); Phys. Rev. B 29, 3913(1984).7. E.V. Thuneberg, J. of Low Temp. Physics 57, 415(1984).8. C. Caroli, P.G. de Gennes, and J. Matricon, Phys. Lett.9, 307 (1964).9. L. Kramer and W. Pesch, Z. Physik 269, 59 (1974).10. N.B. Kopnin, Theory of Nonequilibrium Superconduc-tivity, Clarendon Press, Oxford, 2001.11. G. E. Volovik, The Universe in a Helium Droplet,Clarendon Press, Oxford, 2003.12. I.M. Lifshits, Zh. Eksp. Teor. Fiz. 38, 1569 (1960) [Sov.Phys. JETP 11, 1130 (1960)].13. Y.M. Blanter, M. I. Kaganov, A.V. Pantsulaya, andA.A. Varlamov, Phys. Reports 245, 159 (1994).14. G. E. Volovik, Pis'ma Zh. Eksp. Teor. Fiz. 49, 343(1989) [JETP Lett. 49, 391 (1989)].15. A. S. Mel'nikov, D.A. Ryzhov, and M.A. Silaev, Phys.Rev. B 78, 064513 (2008).16. A. S. Mel'nikov and M.A. Silaev, Pis'ma Zh. Eksp. Teor.Fiz. 83, 675 (2006) [JETP Lett. 83, 578 (2006)].17. A. I. Larkin and Yu.N. Ovchinnikov, Phys. Rev. B 57,5457 (1998).18. A. S. Mel'nikov, A.V. Samokhvalov, and M.N. Zubarev,Phys. Rev. B 79, 134529 (2009).19. L.D. Landau and E.M. Lifshitz, Statistical physics. part2, Pergamon, N.Y., 1980.20. G. E. Volovik, Pis'ma Zh. Eksp. Teor. Fiz. 58, 444(1993) [JETP Lett. 58, 455 (1993)].

�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 9 { 10 2011 7�


