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 2011 December 25Limiting energy density and a regular accelerating Universe inRiemann{Cartan spacetimeA.V.Minkevich1)Department of Theoretical Physics and Astrophysics, Belarussian State University, 220030 Minsk, BelarusDepartment of Physics and Computer Methods, Warmia and Mazury University in Olsztyn, 10-561 Olsztyn, PolandSubmitted 19 October 2011Isotropic cosmology built in the Riemann{Cartan spacetime by using su�ciently general expression ofgravitational Lagrangian is investigated. It is shown that cosmological equations obtained by certain restric-tions on inde�nite parameters of gravitational Lagrangian lead to limiting energy density at the beginning ofcosmological expansion and all cosmological models �lled with usual gravitating matter satisfying standardenergy conditions are regular with respect to energy density, spacetime metrics with its time derivative andtorsion functions. At asymptotics cosmological solutions of spatially 
at models coincide with that of standard�CDM -model for accelerating Universe.1. Introduction. The problem of the beginning ofthe Universe in time in the past { the problem of cosmo-logical singularity (PCS) { remains as one of the mostprincipal problems of relativistic cosmology and gen-eral relativity theory (GR). In accordance with Penrose{Hawking theorems about gravitational singularities themost part of cosmological solutions of GR are singular, ifgravitating matter satis�es standard energy conditions.The behaviour of cosmological solutions near cosmolog-ical singularity was investigated in works by BelinskyV.A., Lifshits E.M., and Khalatnikov I.M. (see [1, 2]and Refs. herein). At the same time many attemptswere undertaken with the purpose to solve the PCS inthe frame of GR and existent candidates to quantumgravitation theory as well as of di�erent generalizationsof Einstein's gravitation theory, some particular regularcosmological solutions were obtained (see, for example[3, 4], review [5] and [6]). From physical point of viewthe appearance of gravitational singularities in gravitat-ing systems with positive values of energy density andpressure is connected with the fact that the gravitationalinteraction in such systems in the frame of GR alwayshas the character of attraction, which increases with thegrowth of energy density. Although the gravitational in-teraction in the case of gravitating systems with negativepressure in the frame of GR can be repulsive, the PCScan not be solved by considering corresponding mod-els: the most part of cosmological solutions includingin
ationary solutions are singular.As it was shown in a number of papers (see [7{13]and Refs. herein) the gravitation theory in 4-dimensionalRiemann{Cartan spacetime U4 { the Poncar�e gauge the-1)e-mail: minkav@bsu.by, awm@matman.uwm.edu.pl

ory of gravity (PGTG) { o�ers opportunities to solve thePCS and also to explain the acceleration of cosmologi-cal expansion at present epoch without introducing thenotion of dark energy (DE). First of all it should benoted that in the framework of gauge approach to grav-itation the PGTG is a necessary generalization of met-ric theory of gravity if the Lorentz group is included togauge group, which corresponds to gravitational interac-tion2). Let us to remind the most important physical re-sults obtained in the frame of isotropic cosmology builtin the frame of PGTG based on the gravitational La-grangian Lg of general type including both a scalar cur-vature and di�erent invariants quadratic in gravitationalgauge �eld strengths { the curvature (F����) and tor-sion (S���) tensors. Any homogeneous isotropic model(HIM) in the frame of PGTG is described by means ofthree functions of time { the scale factor of Robertson{Walker metrics R and two torsion functions S1 and S2determining non-vanishing components of torsion tensor(unlike S1 the torsion function S2 is pseudoscalar withrespect to spatial inversions). Two types of HIM werebuilt and investigated: HIM with the only torsion func-tion S1 and HIM with two torsion functions. Isotropiccosmology based on HIM of the �rst type o�ers oppor-tunities to solve the PCS [7{9]: all cosmological models�lled with usual matter satisfying standard energy con-ditions (including in
ationary models) are regular withrespect to energy density, scale factor R with its timederivatives. However, the situation with DE in the caseof these HIM becomes the same as in GR. Isotropic cos-mology based on HIM with two torsion functions allowsto build regular in
ationary HIM and makes possible to2)From this point of view namely the PGTG but not metrictheory of gravity corresponds to supergravity theory.4 �¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 11 { 12 2011 913



914 A.V.Minkevichexplain accelerating cosmological expansion at presentepoch without introducing DE [10{13]. It is because thephysical spacetime in the vacuum has the structure of deSitter spacetime with non-vanishing torsion [13]. How-ever, cosmological equations used in [10{12] do not ex-clude singular cosmological solutions, and the behaviourof cosmological solutions for 
at HIM at asymptotics candi�er from that of standard cosmological �CDM-modelin dependence on initial conditions [14]. As it is shown inthis Letter, by certain restrictions on inde�nite parame-ters of gravitational Lagrangian PGTG allows to buildtotally regular isotropic cosmology for accelerating Uni-verse, which quantitatively is in agreement at asymptot-ics with theory of standard cosmological �CDM-model.2. Homogeneous isotropic models in PGTG.We will consider the PGTG based on the following ex-pression of gravitational Lagrangian corresponding tospacial parity conservation (de�nitions and notationsof [10] are used below):Lg = [f0F+F����(f1F����+f2F����+f3F����) ++ F��(f4F�� + f5F��) + f6F 2 ++ S��� (a1S��� + a2S���) + a3S���S��� i : (1)The Lagrangian (1) includes the parameter f0 == (16�G)�1 (G is Newton's gravitational constant, thelight velocity c = 1) and a number of inde�nite para-meters: fi (i = 1; 2; :::; 6) and ak (k = 1; 2; 3). Grav-itational equations for HIM with two torsion functionscorresponding to gravitational Lagrangian (1) allow toobtain cosmological equations generalizing Friedmanncosmological equations of GR and equations for torsionfunctions given in general form in [13]. These equationscontain �ve inde�nite parameters:a = 2a1 + a2 + 3a3; b = a2 � a1;f = f1 + f2=2 + f3 + f4 + f5 + 3f6;q1 = f2 � 2f3 + f4 + f5 + 6f6; q2 = 2f1 � f2;and their mathematical structure and physical conse-quences depend essentially on restrictions on these pa-rameters. Unlike metric gravitation theory, quadratic inthe curvature terms of Lg do not lead to higher deriva-tives of R in cosmological equations; higher derivativescan appear because of terms of Lg quadratic in the tor-sion tensor; in order to exclude higher derivatives of Rfrom cosmological equations we have to put the restric-tion a = 0 [13, 15]. It should be noted that isotropiccosmology with a 6= 0 possesses some principal prob-lems: in particular, cosmological equations at physicallyavailable initial conditions lead in this case to not phys-ical solutions [16] and do not exclude singular solutions;

moreover, the presence of the seconde derivative of theHubble parameter in cosmological equations leads to itsoscillating behaviour at asymptotics [17]. The second re-striction concerns the parameter q2: if q2 6= 0, the equa-tion for the torsion function S2 is di�erential equation ofthe second order that leads to oscillating behaviour of theHubble parameter [14]; by putting q2 = 0 we will obtainphysically necessary consequences. Below we will ana-lyze the main relations of isotropic cosmology given in[13] in general case without using any restrictions on in-de�nite parameters by putting the following restrictions:a = 0 and q2 = 0.Cosmological equations generalizing Friedmann cos-mological equations of GR take the following form:kR2 + (H � 2S1)2 � S22 == 16f0Z h�� 6bS22 + �4 ��� 3p� 12bS22�2i ; (2)_H +H2 � 2HS1 � 2 _S1 == � 112f0Z h�+ 3p� �2 ��� 3p� 12bS22�2i ; (3)where � is the energy density, p is the pressure, H == _R=R is the Hubble parameter (a dot denotes the dif-ferentiation with respect to time), the parameter � == f=3f20 (f > 0) has inverse dimension of energy den-sity, and Z = 1+� ��� 3p� 12bS22�. The torsion func-tion S1 is determined by the following way:S1 = � �4Z [ _�� 3_p+ 12f0!HS22 � 12(2b� !f0)S2 _S2];(4)where dimensionless parameter ! = (2f � q1)=f 6= 0 isintroduced. The torsion function S22 satis�es algebraicquadratic equation, which gives the following rootS22 = �� 3p12b + 1� (b=2f0)(1 +pX)12b�(1� !=4) ; (5)whereX = 1+!(f20=b2)[1�b=f0�2(1�!=4)�(�+3p)] 3).In order to reduce cosmological equations (2), (3) toclosed form we have to specify the content of HIM andits equation of state. In connection with this it shouldbe noted that the matter content and its equation ofstate change during cosmological evolution and the formof equation of state depends on coupling of matter withgravitational �eld. In the case of usual gravitating mat-ter with energy density �m > 0 and pressure pm � 03)It seems that the second root for S22 with opposite sign beforepX in (5) does not lead to physically satisfactory theory.�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 11 { 12 2011



Limiting energy density and a regular accelerating Universe : : : 915coupled minimally with gravitation the equation of statecan be written in usual form: pm = pm(�m) and the lawof energy conservation takes the form as in GR:_�m + 3H (�m + pm) = 0: (6)We introduce at early stage of cosmological expansionthe scalar �eld � with potential V = V (�) as componentof gravitating matter with the purpose to investigate in-
ationary HIM. By minimal coupling with gravitationthe equation for scalar �eld takes the usual form as inGR: ��+ 3H _� = �@V@� : (7)Then the total energy density � and pressure p are thefollowing:� = 12 _�2 + V + �m (� > 0); p = 12 _�2 � V + pm: (8)Now by using the formula (5) for torsion function S22and Eqs. (6){(8) we transform the torsion function S1de�ned by (4) to the following form:S1 = �3f0!�4bZ (HD +E); (9)where D = 12 �3dpmd�m � 1� (�m + pm) ++ 13(�m�3pm)+23 _�2+43V� b6f0�(1� !=4)pX ++ 1�!(b=2f0)2pX ��3dpmd�m + 1� (�m + pm) + 4 _�2��� !f0(1� b=f0)b�(1� !=4) ;E = �1 + 1� !(f0=2b)pX � @V@� _�;Z = �!=4+ (b=2f0)(1 +pX)1� !=4 : (10)By using the formulas for torsion functions we write thecosmological equations (2){(3) in the following closedform:kR2 + hH �1 + 3f0!�2bZ D�+ 3f0!�2bZ Ei2 == 16f0Z h�+6(f0Z�b)S22+[1�(b=2f0)(1+pX)]24�(1�!=4)2 i; (11)( _H +H2)�1 + 3f0!�2bZ D�++ 3f0!�2bZ hH( _D � _ZZD +E) + _E � _ZZEi == � 112f0Z h�+ 3p� [1� (b=2f0)(1 +pX)]22�(1� !=4)2 i; (12)

where the quantities S22 , D, E, Z have to be replacedaccording to (5) and (10).3. Accelerating Universe with limiting energydensity. By using obtained cosmological equations wewill analyze properties of cosmological solutions at dif-ferent stages of cosmological evolution. Simultaneouslywe will �nd by what restrictions on inde�nite parame-ters �, b and ! physical consequences are the most sat-isfactory and correspond to observational cosmologicaldata. At �rst we will consider the evolution of cosmolog-ical models at asymptotics, where energy densities aresmall. If the value of dimensionless parameter ! is su�-ciently small j!j � 1, the following estimations are valid:X ! 1, Z ! b=f0, S1 ! 0 and the torsion function S22approximately is equal to:S22 = �� 3p12b + 1� b=f012�b : (13)As a result cosmological equations (2){(3) take theform of Friedmann cosmological equations with e�ectivecosmological constant induced by pseudoscalar torsionfunction S2:kR2 +H2 = 16f0 ��(f0=b) + 14��1(1� b=f0)2(f0=b)� ;(14)_H +H2 ==� 112f0 �(�+3p)(f0=b)�12��1(1�b=f0)2(f0=b)� : (15)E�ective cosmological constant in eqs. (14){(15) bycertain relation for inde�nite parameters � and b coin-cides with cosmological constant of �CDM-model thatallows to explain accelerating cosmological expansion atpresent epoch [10, 11]. The value of parameter b deter-mines the contribution of dark matter to energy densityin the Universe [11]. If dark matter exists, the valueof parameter b is close to f0 being less than f0 and thevalue of ��1 corresponds to the scale of high energy den-sities. By taking into account the role of dark matter ingalaxies and their accumulations in the frame of GR,we have to conclude that the investigation of dark mat-ter problem in the frame of PGTG assumes the studyof inhomogeneous gravitating systems at astrophysicalscale.Now we will analyze the behaviour of cosmologi-cal solutions in the beginning of cosmological expan-sion. First of all important physical consequences fol-low from formula (5) for S22 -function. If the parame-ter ! is positive (0 < ! � 1), because the valueof X can not be negative, we obtain principal con-straint for admissible energy densities and pressures:�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 11 { 12 2011 4�



916 A.V.MinkevichX = 1+!(f20 =b2)[1� (b=f0)� 2(1�!=4)�(�+3p)] � 0or by taking into account smallness of ! the followingrelation: X = 1� 2(f20=b2)!�(�+ 3p) � 0: (16)In the case of systems �lled with usual matter with en-ergy density �m (pm = pm(�m)) without scalar �eldsthe equality de�ned by (16) determines a limiting (max-imum) energy density �max 4). When energy density �mis comparable with �max, the gravitational interactionhas the character of repulsion ensuring the regularityof such systems. The order of �max is determined bythe value of (!�)�1. In the frame of classical theorythe value of �max has to be less than the Planckian en-ergy density. In the case of systems including also scalar�elds, for which energy density and pressure are de-�ned by (8), the relation X � 0 determines in spaceof matter parameters (�m; �; _�) domain of their admis-sible values. This domain is limited by surface L de-�ned by X = 1+!(f20 =b2)[1� b=f0� 2(1�!=4)�(�m++ 3pm + 2 _�2 � 2V )] = 0. Moreover, it is necessary totake into account that additional restriction on admissi-ble values of matter parameters (�m; �; _�) follows frompositivity of expression (5) for S22 . Now we will analyzethe behaviour of cosmological solutions near the limit-ing energy density or limiting surface L, where X � 1.With this purpose we consider the expression of the Hub-ble parameter H following from cosmological equation(11):H� = "� 3f0!�2bZ E � � 16f0Zn�+ 6(f0Z � b)S22 ++ [1� (b=2f0)(1 +pX)]24�(1� !=4)2 o� kR2�1=2#�� �1 + 3f0!�2bZ D��1: (17)Similarly to isotropic cosmology based on HIM with theonly torsion function [7{9], at asymptotics, where energydensities are su�ciently small, H�-solutions correspondto cosmological compression and H+-solutions { to cos-mological expansion, and the transition from H�- toH+-solution takes place by reaching the limiting energydensity or limiting surface L (see below)5). In order4)In the frame of PGTG with gravitational Lagrangian (1) theconclusion about existence of limiting mass density was obtainedin the case of HIM with the only torsion function S1 in [15]. Laterthe hypothesis about existence in the nature of limiting mass den-sity equal to the Planckian one was discussed in [18].5)In the case of HIM of closed type (k = +1) there are alsosolutions without reaching the limiting surface L (see [7]).

to obtain some physical characteristics of such transi-tions the formula (17) forH� can be simpli�ed by takinginto account the smallness of parameter ! (! � 1) andalso that at considering extreme conditions: ��1 � �,X � 1, � � (!�)�1. In the case of models �lled withusual matter without scalar �elds in linear approxima-tion with respect to pX, where the quantity X is de-�ned by (16), it is easy to obtain from (17) the Hubbleparameter and its time derivative in the following form:H� = � 2b23f20!�pX [(1=4b)(�m + pm)�(k=R2)]1=2(3dpm=d�m + 1)(�m + pm) ;_H = 4b23f20!� (1=4b)(�m + pm)� (k=R2)(3dpm=d�m + 1)(�m + pm) : (18)By reaching a limiting energy density (X = 0) the Hub-ble parameter vanishes and the value of its time deriva-tive is the same for H�- and H+-solution and it is pos-itive that corresponds to a bounce. By using obtainedexpression for the Hubble parameter it is easy to showthat by given equation of state pm = pm(�m) the evolu-tion of scale factorR(t) near a bounce takes the followingform: R(t) = Rmin+ r1t2 + :::, where t = 0 correspondsto a bounce, Rmin is minimum value of R depending onlimiting energy density and given equation of state, thevalue of r1 > 0 is expressed by _H at a bounce. It shouldbe noted that in considered case the condition S22 > 0 isvalid, if equation of state of gravitating matter satis�esthe following condition pm � �m=3, and it does not leadto additional restrictions on inde�nite parameters.In the case of models including also scalar �elds theHubble parameter does not vanish by reaching a limit-ing surface L and according to (17) its value on surfaceL is: HL = �2(@V =@�) _�(3dpm=d�m + 1) (�m + pm) + 4 _�2 : (19)The bounce in this case takes place in points of ex-tremum surface in space of matter parameters (�m; �; _�),equation of which we obtain by setting H = 0 in cos-mological equation (11). It is necessary to note thatthe condition S22 > 0 (see (5), (8)) in considered caseleads to additional restrictions on inde�nite parameters,in particular the value of ��1 corresponds to the scaleof high energy densities. By given potential V (�) thenumerical analysis allows to obtain more detailed re-strictions on inde�nite parameters. Cosmological solu-tions can be found by numerical integration of Eqs. (12),(6) and (7) by choosing initial conditions on extremumsurface. Similarly to in
ationary cosmological modelswith the only torsion function (see [7, 8]), if initial valueof scalar �eld is su�ciently large regular cosmological�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 11 { 12 2011



Limiting energy density and a regular accelerating Universe : : : 917solution contains transition stage from compression toexpansion, in
ationary stage with slow-rolling behaviourof scalar �eld and post-in
ationary stage with oscillat-ing scalar �eld. Similarly to our works [7, 8] regular BigBang scenario can be built on the base of such in
ation-ary cosmological models. All cosmological solutions areregular with respect to energy density, the scale factorR and the Hubble parameter H by virtue of existence oflimiting energy density. Unlike HIM with the only tor-sion function S1, in the case of considered HIM with twotorsion functions the torsion does not diverge by reach-ing limiting surface L (or limiting energy density): thetorsion function S2 is continuous and the torsion func-tion S1 undergoes a �nite jump by reaching the surfaceL (or limiting energy density).4. Conclusion. We see that the PGTG allows tobuild totally regular isotropic cosmology for accelerat-ing Universe. It is achieved by virtue of the changeof gravitational interaction in comparison with GR andNewton's theory of gravity at cosmological scale. Thesechanges are provoked by more complicated structure ofphysical spacetime, namely by spacetime torsion. Inconnection with this the following question appears:what situation takes place in the case of gravitating sys-tems at other spatial scales (galaxies, stars, solar sys-tem), what possible role the torsion plays in these sys-tems? First of all, the torsion should be important ingravitating systems at astrophysical scale (galaxies andtheir accumulations), by investigation of which the no-tion of dark matter was introduced more than 70 yearsago. The conclusion obtained in this paper about pos-sible existence of limiting energy density can be of prin-cipal meaning for theory of massive superdense stars,where gravitational repulsion e�ect at extreme condi-tions has to prevent a collapse. Concerning the solarsystem, usual gravitational e�ects including relativisticcorrections can be obtained in this case in the frame ofPGTG, because any vacuum solution of GR (in partic-ular, the vacuum Schwarzschild solution) together withvanishing torsion is exact solution of PGTG indepen-dently on values of inde�nite parameters of gravitationalLagrangian (1) [19]. However, from physical point ofview such solutions have certain limits of their applica-bility, because the physical spacetime in the vacuumin accelerating Universe in the frame of PGTG is deSitter spacetime with non-vanishing torsion (but notMinkowski spacetime) [13].

Physical phenomena discussed above in the frameof PGTG have essentially non-linear origin. In partic-ular, this concerns properties of accelerating Universeat asymptotics, where principal role plays the structureof physical spacetime in the vacuum having also non-linear origin. This leads to necessity to re-examine re-sults of some investigations ful�lled earlier in the frameof PGTG by applying usual approximative method, inparticular the particle content of PGTG (see [13]).1. V.A. Belinsky, E.M. Lifshits, and I.M. Khalatnikov,Adv. Phys. 31, 639 (1982).2. I.M. Khalatnikov and A.Yu. Kamenshchik, Phys. Usp.51, 609 (2008); arXiv:0803.2684 [gr-qc].3. A. Starobinsky, Phys. Lett. B 91, 99 (1980).4. V.Ts. Gurovich and A.A. Starobinskii, Sov. Phys.JETP 50, 844 (1979).5. M. Novello and S. E. Perez Berglia�a, Phys. Rept. 463,127 (2008); arXiv:0802.1634 [astro-ph].6. A.V. Minkevich, Acta Phys. Polon. B 40, 229 (2009);arXiv:0808.0239 [gr-qc].7. A.V. Minkevich, Gravit. Cosmol. 12, 11 (2006);arXiv:gr-qc/0506140.8. A.V. Minkevich and A. S. Garkun, Class. QuantumGrav. 23, 4237 (2006); arXiv:gr-qc/0512130.9. A.V. Minkevich, Acta Phys. Polon. B 38, 61 (2007);arXiv:gr-qc/0512123.10. A.V. Minkevich, A. S. Garkun, and V. I. Kudin, Class.Quantum Grav. 24, 5835 (2007); arXiv:0706.1157 [gr-qc].11. A.V. Minkevich, Phys. Lett. B 678, 423 (2009);arxiv:0902.2860 [gr-qc].12. A. S. Garkun, V. I. Kudin, and A.V. Minkevich, Int. J.Mod. Phys. A 25, 2005 (2010); arXiv:0811.1430 [gr-qc].13. A.V. Minkevich, Mod. Phys. Lett. A 26, 259 (2011);arxiv:1002.0538 [gr-qc].14. A.V. Minkevich, A. S. Garkun, and V. I. Kudin, In: Ein-stein and Hilbert: Dark Matter (ed. V.V. Dvoeglazov),Nova Science Publishers Inc., 2011, p. 157.15. A.V. Minkevich, Phys. Lett. A 80, 232 (1980).16. A.V. Minkevich, A. S. Garkun, and V. I. Kudin,Preprint Arxiv:0811.1430 [gr-qc].17. H. Chen, F.-H. Ho, J.M. Nester et al., JCAP 0910, 027(2009).18. M.A. Markov, Pis'ma v Zh. Eksp. Teor. Fiz. 36, 214(1982).19. K. Hayashi and T. Shirafuji, Progr. Theor. Phys. 64,866 (1980).
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