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Isotropic cosmology built in the Riemann—Cartan spacetime by using sufficiently general expression of

gravitational Lagrangian is investigated. It is shown that cosmological equations obtained by certain restric-

tions on indefinite parameters of gravitational Lagrangian lead to limiting energy density at the beginning of
cosmological expansion and all cosmological models filled with usual gravitating matter satisfying standard
energy conditions are regular with respect to energy density, spacetime metrics with its time derivative and
torsion functions. At asymptotics cosmological solutions of spatially flat models coincide with that of standard

ACDM-model for accelerating Universe.

1. Introduction. The problem of the beginning of
the Universe in time in the past — the problem of cosmo-
logical singularity (PCS) — remains as one of the most
principal problems of relativistic cosmology and gen-
eral relativity theory (GR). In accordance with Penrose—
Hawking theorems about gravitational singularities the
most part of cosmological solutions of GR are singular, if
gravitating matter satisfies standard energy conditions.
The behaviour of cosmological solutions near cosmolog-
ical singularity was investigated in works by Belinsky
V.A., Lifshits E.M., and Khalatnikov I.M. (see [1,2]
and Refs. herein). At the same time many attempts
were undertaken with the purpose to solve the PCS in
the frame of GR and existent candidates to quantum
gravitation theory as well as of different generalizations
of Einstein’s gravitation theory, some particular regular
cosmological solutions were obtained (see, for example
[3, 4], review [5] and [6]). From physical point of view
the appearance of gravitational singularities in gravitat-
ing systems with positive values of energy density and
pressure is connected with the fact that the gravitational
interaction in such systems in the frame of GR always
has the character of attraction, which increases with the
growth of energy density. Although the gravitational in-
teraction in the case of gravitating systems with negative
pressure in the frame of GR can be repulsive, the PCS
can not be solved by considering corresponding mod-
els: the most part of cosmological solutions including
inflationary solutions are singular.

As it was shown in a number of papers (see [7-13]
and Refs. herein) the gravitation theory in 4-dimensional
Riemann—Cartan spacetime Uy — the Poncaré gauge the-
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ory of gravity (PGTG) — offers opportunities to solve the
PCS and also to explain the acceleration of cosmologi-
cal expansion at present epoch without introducing the
notion of dark energy (DE). First of all it should be
noted that in the framework of gauge approach to grav-
itation the PGTG is a necessary generalization of met-
ric theory of gravity if the Lorentz group is included to
gauge group, which corresponds to gravitational interac-
tion?). Let us to remind the most important physical re-
sults obtained in the frame of isotropic cosmology built
in the frame of PGTG based on the gravitational La-
grangian L, of general type including both a scalar cur-
vature and different invariants quadratic in gravitational
gauge field strengths — the curvature (Fug,,) and tor-
sion (Sauv) tensors. Any homogeneous isotropic model
(HIM) in the frame of PGTG is described by means of
three functions of time — the scale factor of Robertson—
Walker metrics R and two torsion functions S; and Ss
determining non-vanishing components of torsion tensor
(unlike S; the torsion function S, is pseudoscalar with
respect to spatial inversions). Two types of HIM were
built and investigated: HIM with the only torsion func-
tion S; and HIM with two torsion functions. Isotropic
cosmology based on HIM of the first type offers oppor-
tunities to solve the PCS [7-9]: all cosmological models
filled with usual matter satisfying standard energy con-
ditions (including inflationary models) are regular with
respect to energy density, scale factor R with its time
derivatives. However, the situation with DE in the case
of these HIM becomes the same as in GR. Isotropic cos-
mology based on HIM with two torsion functions allows
to build regular inflationary HIM and makes possible to

2)From this point of view namely the PGTG but not metric
theory of gravity corresponds to supergravity theory.
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explain accelerating cosmological expansion at present
epoch without introducing DE [10-13]. It is because the
physical spacetime in the vacuum has the structure of de
Sitter spacetime with non-vanishing torsion [13]. How-
ever, cosmological equations used in [10-12] do not ex-
clude singular cosmological solutions, and the behaviour
of cosmological solutions for flat HIM at asymptotics can
differ from that of standard cosmological ACDM-model
in dependence on initial conditions [14]. As it is shown in
this Letter, by certain restrictions on indefinite parame-
ters of gravitational Lagrangian PGTG allows to build
totally regular isotropic cosmology for accelerating Uni-
verse, which quantitatively is in agreement at asymptot-
ics with theory of standard cosmological ACDM-model.

2. Homogeneous isotropic models in PGTG.
We will consider the PGTG based on the following ex-
pression of gravitational Lagrangian corresponding to
spacial parity conservation (definitions and notations
of [10] are used below):

‘Cg = [fOF_'_FaﬂMV(flFaﬁuu+f2FauﬂV+f3Fuuaﬁ) +
+ FI“I(f4FuV + f5Fuu) + f6F2 +
+ S (a1 Say + 12Sua) + 0555 5K (1)

The Lagrangian (1) includes the parameter fo =
= (16mrG) ! (G is Newton’s gravitational constant, the
light velocity ¢ = 1) and a number of indefinite para-
meters: f; (1 = 1,2,...,6) and ax (kK = 1,2,3). Grav-
itational equations for HIM with two torsion functions
corresponding to gravitational Lagrangian (1) allow to
obtain cosmological equations generalizing Friedmann
cosmological equations of GR and equations for torsion
functions given in general form in [13]. These equations
contain five indefinite parameters:

a = 2a; + a2 + 3as,
F=h+f/2+ fs+ fat+ fs + 36,
@ =fo—2fs+ fa+fs+6fs, q2=2f1— fo,

and their mathematical structure and physical conse-
quences depend essentially on restrictions on these pa-
rameters. Unlike metric gravitation theory, quadratic in
the curvature terms of £, do not lead to higher deriva-
tives of R in cosmological equations; higher derivatives
can appear because of terms of £, quadratic in the tor-
sion tensor; in order to exclude higher derivatives of R
from cosmological equations we have to put the restric-
tion ¢ = 0 [13,15]. It should be noted that isotropic
cosmology with a # 0 possesses some principal prob-
lems: in particular, cosmological equations at physically
available initial conditions lead in this case to not phys-
ical solutions [16] and do not exclude singular solutions;

b:a2_a17

moreover, the presence of the seconde derivative of the
Hubble parameter in cosmological equations leads to its
oscillating behaviour at asymptotics [17]. The second re-
striction concerns the parameter go: if g2 # 0, the equa-
tion for the torsion function Ss is differential equation of
the second order that leads to oscillating behaviour of the
Hubble parameter [14]; by putting g» = 0 we will obtain
physically necessary consequences. Below we will ana-
lyze the main relations of isotropic cosmology given in
[13] in general case without using any restrictions on in-
definite parameters by putting the following restrictions:
a=0and ¢g; =0.

Cosmological equations generalizing Friedmann cos-
mological equations of GR take the following form:

k
o + (H - 28,)* -85 =
1 a 2
= 5%z [p—6bS§+Z(p—3p—12bS§) ] 2)

H+ H? -2HS, — 28, =

=z -5 128D, @)
where p is the energy density, p is the pressure, H =
= R/R is the Hubble parameter (a dot denotes the dif-
ferentiation with respect to time), the parameter o =
= f/3f% (f > 0) has inverse dimension of energy den-
sity, and Z =1+« (p —3p— 12bS§). The torsion func-
tion Sp is determined by the following way:

«x

Si=-1z

[ — 3p + 12fowH S3 — 12(2b — wf0)S255),
(4)
where dimensionless parameter w = (2f —q1)/f # 0 is

introduced. The torsion function S? satisfies algebraic
quadratic equation, which gives the following root

s p=3p  1-(b/2f0)(1 +VX)
52 = g 12ba(f—w/4) ’ (5)

where X = 1+w(f2/b?)[1-b/fo—2(1—w/4)a(p+3p)] ).
In order to reduce cosmological equations (2), (3) to
closed form we have to specify the content of HIM and
its equation of state. In connection with this it should
be noted that the matter content and its equation of
state change during cosmological evolution and the form
of equation of state depends on coupling of matter with
gravitational field. In the case of usual gravitating mat-
ter with energy density p,, > 0 and pressure p,, > 0

3)It seems that the second root for Sg with opposite sign before
v X in (5) does not lead to physically satisfactory theory.
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coupled minimally with gravitation the equation of state
can be written in usual form: p,, = pn(pm) and the law
of energy conservation takes the form as in GR:

pm +3H (pm +pm) =0. (6)

We introduce at early stage of cosmological expansion
the scalar field ¢ with potential V' = V' (¢) as component
of gravitating matter with the purpose to investigate in-
flationary HIM. By minimal coupling with gravitation
the equation for scalar field takes the usual form as in
GR:

. ) v

3Hp = ———. 7

o+3HY =52 (7)
Then the total energy density p and pressure p are the
following:

1. 1.
p=358"+V+pm (p>0), p=356"—V+pm (8)

Now by using the formula (5) for torsion function S2
and Egs. (6)—(8) we transform the torsion function S;
defined by (4) to the following form:

3 fowa
4b7

S1=— (HD + E), 9)

where

[y

2.
+ —(pm—3pm)+—¢2+§v‘mf+

41 b/2f° [<3dp’” )pm+pm)+4¢'>2]—

~ who(l—b/fo)

ba(l —w/4)’
(fo/2b)>
E=(1+———7 :
(1+=5%) 5%

—w/4+ (b/2fo)(1 + VX)

1-w/4 '
By using the formulas for torsion functions we write the

cosmological equations (2)—(3) in the following closed
form:

w

Z= (10)

k 3 fowa fowa 12
B [H<1+ 27 D) =

_ 1 2 [1=(b/2f0) 1+VX)]?
=672 [p+6(foZ—b)52+ 4a(1°_w/4)2 ] (11)
(H + H?) (1 + 35‘;“2" D) +
3;’;" [H(D - gD +E) +E- EE]
_ 1 [ — (b/2f0)(1 + VX)]
T12foZ [” +3p 2a(10— w/4)? ] (12)
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where the quantities S2, D, E, Z have to be replaced
according to (5) and (10).

3. Accelerating Universe with limiting energy
density. By using obtained cosmological equations we
will analyze properties of cosmological solutions at dif-
ferent stages of cosmological evolution. Simultaneously
we will find by what restrictions on indefinite parame-
ters a, b and w physical consequences are the most sat-
isfactory and correspond to observational cosmological
data. At first we will consider the evolution of cosmolog-
ical models at asymptotics, where energy densities are
small. If the value of dimensionless parameter w is suffi-
ciently small |w| < 1, the following estimations are valid:
X = 1,Z — b/fy, S1 — 0 and the torsion function S2
approximately is equal to:

52_p_3p

1-b/fo
27 12 '

12ab

(13)

As a result cosmological equations (2)-(3) take the
form of Friedmann cosmological equations with effective
cosmological constant induced by pseudoscalar torsion
function Ss:

k 1

— +H’ =

i H = g oo/) + o 0 =012/

(14)
H+H? =

—— 7 |/~ 18/ 5 o) - (15)
Effective cosmological constant in eqs. (14)—(15) by
certain relation for indefinite parameters a and b coin-
cides with cosmological constant of ACDM-model that
allows to explain accelerating cosmological expansion at
present epoch [10,11]. The value of parameter b deter-
mines the contribution of dark matter to energy density
in the Universe [11]. If dark matter exists, the value
of parameter b is close to fy being less than fy and the
value of a1 corresponds to the scale of high energy den-
sities. By taking into account the role of dark matter in
galaxies and their accumulations in the frame of GR,
we have to conclude that the investigation of dark mat-
ter problem in the frame of PGTG assumes the study
of inhomogeneous gravitating systems at astrophysical
scale.

Now we will analyze the behaviour of cosmologi-
cal solutions in the beginning of cosmological expan-
sion. First of all important physical consequences fol-
low from formula (5) for S3-function. If the parame-
ter w is positive (0 < w <« 1), because the value
of X can not be negative, we obtain principal con-
straint for admissible energy densities and pressures:

4*
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X =14w(f3/v)[1—(b/fo) —2(1 —w/4)a(p+3p)] > 0
or by taking into account smallness of w the following
relation:

X =1-2(f2/b)walp+3p) >0.  (16)

In the case of systems filled with usual matter with en-
ergy density pm (Pm = Pm(pm)) without scalar fields
the equality defined by (16) determines a limiting (max-
imum) energy density pmax *). When energy density pp,
is comparable with ppax, the gravitational interaction
has the character of repulsion ensuring the regularity
of such systems. The order of pmax is determined by
the value of (wa)~!. In the frame of classical theory
the value of ppax has to be less than the Planckian en-
ergy density. In the case of systems including also scalar
fields, for which energy density and pressure are de-
fined by (8), the relation X > 0 determines in space
of matter parameters (pm,, @, qb) domain of their admis-
sible values. This domain is limited by surface L de-
fined by X = 1+ w(f2/b?)[1—b/fo—2(1 —w/4)a(pm +
+ 3pm + 2¢% — 2V)] = 0. Moreover, it is necessary to
take into account that additional restriction on admissi-
ble values of matter parameters (pp,, ¢, ¢) follows from
positivity of expression (5) for S2. Now we will analyze
the behaviour of cosmological solutions near the limit-
ing energy density or limiting surface L, where X < 1.
With this purpose we consider the expression of the Hub-
ble parameter H following from cosmological equation
(11):

B 3 fowa
2b7

Hi:[ Ei(ﬁfiz{p—%ﬁ(]‘oZ—b)S%#—

NLEIUEARERY o NN )”2] »

4o(l — w/4)? " R?
-1
x (1 + 3;‘2?11)) . (17)

Similarly to isotropic cosmology based on HIM with the
only torsion function [7-9], at asymptotics, where energy
densities are sufficiently small, H_-solutions correspond
to cosmological compression and H-solutions — to cos-
mological expansion, and the transition from H_- to
H  -solution takes place by reaching the limiting energy
density or limiting surface L (see below)®). In order

4)In the frame of PGTG with gravitational Lagrangian (1) the
conclusion about existence of limiting mass density was obtained
in the case of HIM with the only torsion function S; in [15]. Later
the hypothesis about existence in the nature of limiting mass den-
sity equal to the Planckian one was discussed in [18].

5)In the case of HIM of closed type (k = +1) there are also
solutions without reaching the limiting surface L (see [7]).

to obtain some physical characteristics of such transi-
tions the formula (17) for Hy can be simplified by taking
into account the smallness of parameter w (w < 1) and
also that at considering extreme conditions: a1 < p,
X <1, p~ (wa)~!. In the case of models filled with
usual matter without scalar fields in linear approxima-
tion with respect to v/ X, where the quantity X is de-
fined by (16), it is easy to obtain from (17) the Hubble
parameter and its time derivative in the following form:

20> VX[(1/40)(pm + pm)—(k/R*)]*/?
3fgwa (3dpm/dpm + 1)(pm + Pm)
i 4 (1/45)(pm + pm) — (k/R?)
3f3wa (3dpm/dpm + 1)(pm + Pm)

H: =

)

(18)

By reaching a limiting energy density (X = 0) the Hub-
ble parameter vanishes and the value of its time deriva-
tive is the same for H_- and H-solution and it is pos-
itive that corresponds to a bounce. By using obtained
expression for the Hubble parameter it is easy to show
that by given equation of state p,, = pm(pm) the evolu-
tion of scale factor R(t) near a bounce takes the following
form: R(t) = Rpin + r1t? + ..., where ¢t = 0 corresponds
to a bounce, Ry is minimum value of R depending on
limiting energy density and given equation of state, the
value of r; > 0 is expressed by H at a bounce. It should
be noted that in considered case the condition S2 > 0 is
valid, if equation of state of gravitating matter satisfies
the following condition p,, < pm /3, and it does not lead
to additional restrictions on indefinite parameters.

In the case of models including also scalar fields the
Hubble parameter does not vanish by reaching a limit-
ing surface L and according to (17) its value on surface
L is:

—2(0V/9¢)$

H; = —. (19)
(3dpm /dpm + 1) (pm + pm) + 4¢?

The bounce in this case takes place in points of ex-

tremum surface in space of matter parameters (p.,, ¢, @),
equation of which we obtain by setting H = 0 in cos-
mological equation (11). It is necessary to note that
the condition S2 > 0 (see (5), (8)) in considered case
leads to additional restrictions on indefinite parameters,
in particular the value of @' corresponds to the scale
of high energy densities. By given potential V(¢) the
numerical analysis allows to obtain more detailed re-
strictions on indefinite parameters. Cosmological solu-
tions can be found by numerical integration of Egs. (12),
(6) and (7) by choosing initial conditions on extremum
surface. Similarly to inflationary cosmological models
with the only torsion function (see [7,8]), if initial value
of scalar field is sufficiently large regular cosmological

Iucema B ARITD
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solution contains transition stage from compression to
expansion, inflationary stage with slow-rolling behaviour
of scalar field and post-inflationary stage with oscillat-
ing scalar field. Similarly to our works [7, 8] regular Big
Bang scenario can be built on the base of such inflation-
ary cosmological models. All cosmological solutions are
regular with respect to energy density, the scale factor
R and the Hubble parameter H by virtue of existence of
limiting energy density. Unlike HIM with the only tor-
sion function Si, in the case of considered HIM with two
torsion functions the torsion does not diverge by reach-
ing limiting surface L (or limiting energy density): the
torsion function S, is continuous and the torsion func-
tion S; undergoes a finite jump by reaching the surface
L (or limiting energy density).

4. Conclusion. We see that the PGTG allows to
build totally regular isotropic cosmology for accelerat-
ing Universe. It is achieved by virtue of the change
of gravitational interaction in comparison with GR and
Newton’s theory of gravity at cosmological scale. These
changes are provoked by more complicated structure of
physical spacetime, namely by spacetime torsion. In
connection with this the following question appears:
what situation takes place in the case of gravitating sys-
tems at other spatial scales (galaxies, stars, solar sys-
tem), what possible role the torsion plays in these sys-
tems? First of all, the torsion should be important in
gravitating systems at astrophysical scale (galaxies and
their accumulations), by investigation of which the no-
tion of dark matter was introduced more than 70 years
ago. The conclusion obtained in this paper about pos-
sible existence of limiting energy density can be of prin-
cipal meaning for theory of massive superdense stars,
where gravitational repulsion effect at extreme condi-
tions has to prevent a collapse. Concerning the solar
system, usual gravitational effects including relativistic
corrections can be obtained in this case in the frame of
PGTG, because any vacuum solution of GR (in partic-
ular, the vacuum Schwarzschild solution) together with
vanishing torsion is exact solution of PGTG indepen-
dently on values of indefinite parameters of gravitational
Lagrangian (1) [19]. However, from physical point of
view such solutions have certain limits of their applica-
bility, because the physical spacetime in the vacuum
in accelerating Universe in the frame of PGTG is de
Sitter spacetime with non-vanishing torsion (but not
Minkowski spacetime) [13].
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Physical phenomena discussed above in the frame
of PGTG have essentially non-linear origin. In partic-
ular, this concerns properties of accelerating Universe
at asymptotics, where principal role plays the structure
of physical spacetime in the vacuum having also non-
linear origin. This leads to necessity to re-examine re-
sults of some investigations fulfilled earlier in the frame
of PGTG by applying usual approximative method, in
particular the particle content of PGTG (see [13]).
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