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The effects of intermodal dispersion on ultrashort optical pulse propagation through multi-core fibers are

analyzed theoretically, which has been ignored in previous studies.

A three-core fiber with collinear and tri-

angular configuration and a four-core fiber are considered. We demonstrate with numerical examples that the
intermodal dispersion can cause pulse breakup effect in multi-core fibers.

1. Introduction. It was demonstrated by Fin-
layson and Stegeman that a three-core nonlinear direc-
tional coupler can offer some distinct advantages over
the two-core coupler [1]. In particular, by comparison
with the two-waveguide coupler, three-waveguide cou-
plers have more output states, markedly sharper switch-
ing characteristics, and display greater sensitivity to the
input state [2]. Recently, the nonlinear three-core cou-
plers based on a photonic crystal fiber (PCF) have been
shown that the three-core PCF reveals many novel char-
acteristics and is capable of realizing polarization split-
ter, mode splitter, and novel WDM demultiplexer [3-7].

It has been shown that the intermodal dispersion can
affect significantly the propagation of ultra-short pulses
in the two-core fiber [8-16]. It’s expected that the inter-
modal dispersion, caused by the difference between the
group delays of two modes, should exist in multi-core
(three-core and four-core) fiber. However, so far, the
studies on multi-core fibers have neglected the effects of
the intermodal dispersion. In this Letter, different pulse
switching dynamics in multi-core fibers are investigated
and the effects of intermodal dispersion on short pulse
propagation in multi-core fibers are highlighted.

2. Analysis and Discussion. We consider a three-
core fiber with both the collinear and triangular configu-
ration and a four-core fiber as shown in Fig.1. The nor-
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Fig. 1. Schematics of the three-core and four-core fiber con-
figuration: collinear three-core fiber (a), triangular three-
core fiber (b) and four-core fiber (c)
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malized coupled-mode equations that describe the prop-
agation of ultrashort pulses in a collinear three-core fiber
are expressed as Egs. (1)—(3):

i% ;%;1; +|A1[?A; + RA, +zR'aa‘;2 =0, (1)
% + %aa;; + A2 A + R(A; + A2)+

+iR' (% + %) =0, (2)

% +%%1f123 + |As|?As + RA, + R’aa‘; 0, (3)

where A;, A> and As; are the normalized amplitudes
of the modes in the individual cores, respectively [13];
Z =z/Lpand T = (t—z/vy)/Tp are the normalized dis-
tance and retarded-time coordinates, respectively (with
z and ¢ the actual distance and time, respectively), where
Lp = —TZ/B- is the dispersion length with G2(< 0)
the group-velocity dispersion, v, is the group veloc-
ity, and Ty is a characteristic width of the input pulse;
R = -T3C/B; and R' = —TpC" /(3> [13] are the normal-
ized coupling coefficient and coupling-coeflicient disper-
sion or intermodal dispersion, respectively, where C is
the coupling coefficient and (with w the angular optical
frequency) is a measure of the wavelength dependence of
the coupling coefficient. The terms with R’ in Egs. (1)—
(3) account for the intermodal dispersion.

In our study, we assume that a pulse is launched into
only one core, i.e., 41(0,T) = Asech(T), A2(0,T) =
A3(0,T) = 0, where A is the normalized amplitude of the
input pulse and the peak power of the pulse is Py = |A|2.
We solve the coupled-mode equations numerically by a
Fourier series analysis method [15].

Figure 2 shows the evolution of the normalized pulse
envelopes in a collinear three-core fiber. The results
are calculated for R = 10 with intermodal dispersion
R' =0 and R’ = —6, respectively, where U = |4,|2/A?,
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Fig. 3. Pulse propagation in a triangular three-core fiber for R = 10 with R’ =

V = |A,)?/A%, W = |A3|*>/A? are the normalized power
envelopes of the pulses. The values R' = —6 correspond
roughly to the situation of propagating a ~ 100-fs pulse
at the wavelength 1.55um in a two-core fiber with a
center- to-center core separation approximately 5 times
the core radius [10]. As shown in Fig. 2a, in the absence
of intermodal dispersion, the pulse can switch back and
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forth in three cores without pulse distortion. However,
when intermodal dispersion is included, the switching
dynamics changes greatly. As can be seen from Fig.2b,
we can observe that two small pulses emerge from Core
2, and the output pulse from Core 1 and Core 3 are
identical, where three pulses emerge from the output
and their group velocity are different. This is because
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there are three supermodes in the fiber, which has dif-
ferent field distributions in three cores. Due to the in-
termodal dispersion, these supermodes propagate at dif-
ferent group velocities. The three sets of pulses at the
output of the fiber shown in Fig.2 correspond to the
three separated supermodes, respectively.

The normalized coupled-mode equations for a trian-
gular three-core fiber are given by:

04, 10%A
’a—zl +35 6T21 + A2 A1 + R(As + As)+
L (0Ay 04
! _— _— =
+iR (BT + 6T> 0, (4)
04y 10%A
za—; +35 6T22 + 42242 + R(A1 + A3)+
(041 04
! _— _— =
+iR (BT + BT) 0, (5)
043 10%A
Z6—Z3 2 6T23 +[As|"As + R(AL + 42)+
(041 04,
! _— Eg— =
+iR <6T + aT) 0, (6)

The terms follow those defined in Egs. (1)—(3). The
pulse propagation in a triangular three-core fiber for
R =10 with R' =0 and R' = —6 are shown in Figs. 3a
and b respectively. It can be seen that clear pulse switch-
ing dynamics occurs without the consideration of inter-
modal dispersion. In the presence of intermodal dis-
persion, we can observe the pulse break up effect si-
multaneously in three cores. Due to the symmetry of a
triangular three-core fiber, the output pulse from Core 2
and Core 3 are identical.

As for collinear four-core fibers, the optimized con-
figuration with unequal core spacing is studied. When
the separation between the middle two cores is made
smaller so that the coupling coefficient between the mid-
dle two cores is larger than that of the two side cores
by a factor of 2/+/3, 100% power transfer from the first
core to the fourth core becomes possible. The normal-
ized coupled-mode equations are:
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(10)
The input condition is: A4;(0,7) = Asech(T),
A2 (O,T) = A3 (O,T) = A4(0,T) = 0. The switch-
ing dynamics of a four-core fiber with R = 10 for R' =0
and R' = —6 are shown in Figs.4a and b respectively,
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Fig. 4. Pulse propagation in a four-core fiber for R = 10
with R' =0 (a) and R’ = —6 (b)

where U = |A1|?/A%, V = |As)?/A2, W = |A3|?/A%,
and X = |A44]|?/A%. Comparing Fig.4a with Fig.4b, we
can see that in the presence of intermodal dispersion,
the input pulse splits into separate pulses in four cores
completely. As shown in Fig.4b, two pulses with equal
powers emerge from Core 1 and Core 4, while four
small pulses with equal powers emerge from Core 2 and
Core 3. There exists group delay difference between
subpulses. This can be understood in that there are
four supermodes in the fiber, which has different
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field distributions in four cores. Owing to intermodal
dispersion, these supermodes propagate along the fiber
at different group velocities. The four sets of pulses at
the output of the fiber shown in Fig.4 correspond to
the four separated supermodes, respectively.

3. Conclusion. By solving a set of generalized, lin-
early coupled nonlinear Schrodinger equations including
intermodal dispersion, the pulse switching dynamics of
nonlinear three-core (collinear and triangular) and four-
core fibers are analyzed. We find that when the input
pulse is shorter than a few hundred femtoseconds, the
intermodal dispersion in the fiber can lead to splitting
of the input pulse into sets of smaller pulses emerging
from all the cores of the fiber over a short distance. Our
results will be very useful for the design of more realistic
multi-core fibers with seven or more cores.
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