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 2012 February 10Fermi point in graphene as a monopole in momentum spaceM.A. Zubkov1)Institute of Theoretical and Experimental Physics, 117259 Moscow, RussiaSubmitted 19 December 2011We consider the e�ective �eld theory of graphene monolayer with the Coulomb interaction between fermi-ons taken into account. The gauge �eld in momentum space is introduced. The position of the Fermi pointcoincides with the position of the corresponding monopole. The procedure of extracting such monopoles duringlattice simulations is suggested.1. Introduction. Graphene is a unique (2 + 1)-dimensional nonrelativistic system that shares commonproperties with relativistic quantum �eld theory. Inparticular, in the e�ective �eld theory of graphenethe massless Dirac spinors appear [1{4]. When theCoulomb interaction is taken into account, the e�ectiveLorentz symmetry is broken. The phase structure ofthe model may be changed when the external conditionsare changed (that may lead, say, to the change of Fermivelocity vF) [5{9]. Change of the phase structure of themodel must be accompanied with the deformation of themomentum space topology [10, 11]. Therefore, it is im-portant to investigate various topological invariants inmomentum space of the e�ective �eld model.In general in 3D the Fermi points are not topologi-cally stable [10]. This is because �2(GL(N;C)) = 0 forN � 2. The N �N Green function in momentum spacebelongs to GL(N;C). That's why topological trivialityof mapping S2 ! GL(N;C) does not allow topologicalstability of the Green function's poles in general case.However, if a certain symmetry is present that reducesthe size of the space of the Green functions, the topo-logical stability becomes possible [11, 7]. In particular,the 3D-model of graphene monolayer has such a sym-metry that e�ectively reduces space of the Green func-tions considerably. As a result, the topological invariantN2 appears. This invariant is expressed through Greenfunction at zero frequency ! = 0 and is an integral overthe closed contour C around Fermi point in the plane of2D momenta p (see, for example, [11]). The importantadvantage of the existence of this invariant is that thepole of the Green function cannot disappear without aphase transition. It is worth mentioning, however, thatthis construction is less natural than that of the invariantN3 of 4D-theory [10]. This is because only the structureof ! = 0 plane in momentum space is re
ected by N2.Moreover, the given construction was introduced whenColoumb interaction between quasiparticles is neglected,1)e-mail: zubkov@itep.ru

and in the case, when these interactions are present, itrequires an additional investigation.In this paper we extend the construction of N2 to thee�ective �eld model of graphene in such a way that thetopological invariant is written as an integral over thesurface in 3D momentum space (!;p). In the form pre-sented here this invariant works also for the case, whenthe Coulomb interaction is present. We show that whenthe Green function is smooth enough, our constructioncan be reduced to the original construction of N2. Inaddition, we present the de�nition of the gauge �eld inmomentum space such that the positions of the corre-sponding monopoles coincide with the positions of thepoles or zeros of the Green function. This construc-tion is intended mainly to be used during lattice simu-lations. We also suggest the procedure of extraction themonopoles in momentum space for the lattice discretiza-tion with staggered fermions.2. The �eld theoretical e�ective model forgrapheme. The low energy e�ective model of graphenemay be derived [1{3] starting from the simple non-relativistic Hamiltonian that describes the interactionsof electrons that belong to neighbor Carbon atoms. Thecarbon atoms of graphene form a honeycomb lattice withtwo sublattices A and B (or the triangular form). Fur-ther we denote the lattice spacing by a. Let us introducevectors that connect a vertex of the sublattice A to itsneighbors (that belong to the sublatticeB): l1 = (�a; 0),l2 = (a=2; ap3=2), l3 = (a=2;�ap3=2). The Hamil-tonian has the formH = �tX�2A 3Xj=1h y(r�) (r� + lj) ++  y(r� + lj) (r�)i; (1)Here t is the hopping parameter, operator  y createselectrons at the points of the lattice.Let us de�ne two electron �elds in momentum spacethat correspond to two sublattices:168 �¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 3 { 4 2012



Fermi point in graphene as a monopole in momentum space 169 A(k) = 1V X�2A (r�)e�ik(r�+l1); B(k) = 1V X�2B (r�)e�ikr� : (2)Here V is the number of points in the sublattice A. TheBrillouin zone is a hexagon with opposite sides identi-�ed. There are two di�erent vertices of the hexagonthat are denoted K+, K�. Quasiparticle energy van-ishes at these points. We expand  around K+, K�,denote  �A;B(q) �  A;B(K� + q) and introduce the 4-component �eld  = � +A ;  +B ;  �A ;  �B�T.At low energy the e�ective �eld theory appears. Tak-ing the Fourier transform from q to the coordinate spacewe come to the �eld { theoretic formulation of the model:H = Z d2x y(x)D̂ (x); (3)where D̂ has the form of the usual Dirac operator takenon the 2D hypersurface x3 = 0: D̂ = �ivF 
0
a@a,a = 1; 2, where vF = (3ta)=2 is the Fermi velocity (thatis about 1=300). Here, 
 are the gamma-matrices inthe representation to be speci�ed below. Let us remindthat we started from the nonrelativisticHamiltonian andcompletely disregarded spin degrees of freedom. Now wetake them into account adding a new index to the �eld  .We assume it has two spin components. In hamiltonian(3) gamma-matrices act on the pseudospin index whilethe true spin operator does not enter the Hamiltonian.We consider the interaction between quasiparticlesdue to the photon exchange (A is the 3 + 1 electromag-netic �eld). Let us perform the Wick rotation, the rescal-ing of time, and gauge �elds: t! ix4=vF A0 ! ipvFA4,�A! 1pvF �A.Further we denote g = e=pvF. Therefore, the ana-logue of the �ne structure constant is �F = �=vF �� 300=137 � 2. We also introduce Euclidean Diracmatrices that satisfy f�i;�jg = 2�ij :�4 =  �3 00 �3 ! ; �1 =  ��1 00 ��1 ! ;�2 =  ��2 00 �2 ! ; �3 =  0 ��2��2 0 ! ;�5 =  0 �i�2i�2 0 ! ; i�3�5 =  1 00 �1 ! ;� =  +�4: (4)We introduce �nite temperature T via taking an in-tegral over x4 within the interval [0; vF=T ] and adopt-ing the periodic in x4 boundary conditions. The chem-ical potential is assumed to be equal to zero. Due to

vF � 1=300 � 1 the 
uctuations of Aa are suppressedand we neglect them in the functional integral. We arriveat the partition function:Z = Z D� D DAexpn�12 Z d4x(@IA4)2 �� Z d3x� A[(@4 � igA4)�4 + @a�a] Ao;a = 1; 2; I; J = 1; 2; 3: (5)Here index A = 1; 2 belongs to the spin degrees of free-dom.3. Green functions. It is worth mentioning thatthe Green function has to be considered in a certaingauge. The gauge freedom of the system correspondsto the transformation A4 ! A4 + @4�(x4),  ! ei� .We may �x this gauge freedom via implying a certaingauge �xing condition. For example we may choose thecondition A4(x4; z) = 0 for a certain 3D-position z. Themodel at �nite temperature, i.e., with periodic bound-ary conditions along x4 should be considered with care.When the system is considered in lattice regularization,the value of A4 on a certain point (x40; z) must not be�xed. This choice of the gauge might appear to breakgeneral properties of the Green functions (see Appendix)as it introduces the selected point in plane x � y. Wemay instead �x another gauge minimizing the functionalR A24d4x with respect to the gauge transformations. Fur-ther we imply that the given gauge is �xed and the gauge�xing condition is inserted into the functional measureover A4.Fermion Green function has the form:G = h yx yi = 1Z Z D yD DA yx y ��expn�12 Z d4x(@IA4)2� Z d3x� [(@4 � igA4)�4 ++ @a�a ]o; a = 1; 2; I; J = 1; 2; 3: (6)In order to reveal the 3D nature of the system let usconsider the following representation of the spinor �eld: �  �+�2�� ! : (7)In terms of �+ and �� the Green functions are:G�� = 1Z Z D�yD�DA�y�(x)��(y)�� expn�12 Z d4x(@IA4)2 �� Z d3x��y�3[(@4 � igA4)�3 � @1�1 � @2�2]�� �� Z d3x�+y�3[(@4 � igA4)�3 � @1�1 � @2�2]�+o: (8)�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 3 { 4 2012



170 M.A. ZubkovWe have, obviously, G++ = G�� = G. At the sametime G�� = h�y�(x)��(y)i = 0. We also imply that theGreen function is diagonal in spin index. That's why Gcan be understood as the 2�2-matrix. On the languageof �� di�erent �3 chiralities correspond to the stateswith �+ = ���. Di�erent �5 chiralities correspond tothe states with �+ = �i�i, i�3�5 chiralities correspondto �� = 0. In momentum space the 2� 2-matrix G canbe expressed asG(!;p) = Z d3xG(0; x)ei!x4+i(px) == i[g0(!;p) + ga(!;p)�a]�3; a = 1; 2; 3: (9)Here vectors p;x are two component.Direct calculation givesG = 1Z Z DAexph�12 Z d4x(@IA4)2i��Det2hi(@4 � igA4)�3 � i@1�1 � i@2�2i�� ii(@4 � igA4)�3 � i@1�1 � i@2�2 �3: (10)OperatorQ = i[@4�igA4]�3�i[@1]�1�i[@2]�2 is Her-mitian for any real A4. That's why we come to the con-clusion that the operator iG�3 is also Hermitian. Thismeans that the functions ga(!;p); a = 0; 1; 2; 3 are real.As a results �iG�3 belongs to u(2). Considering sym-metries of the Green function, we come to the followingform of G (see Appendix):g0(!;p) = 0; g3(!;p) = ~f�!; jpj2�;g(!;p) = p~h�!2; jpj2�;~f�!; jpj2� = �~f��!; jpj2�: (11)That's why iG�3 2 su(2). If in addition, the scale in-variance is not broken (in particular, T = 0), and thefunctions ~f; ~h are smooth enough, we have the furthersimpli�cation:g3(!;p) = !!2 + jpj2 f� !2jpj2�;g(!;p) = p!2 + jpj2 h� !2jpj2�: (12)4. Topological invariant at ! = 0. In some publi-cations (see, for example, [11]) the following expressionhas been considered that is shown to be a topologicalinvariant both with and without external magnetic �eldwhen the interaction with A4 is switched o�:N2 = 14�iTr�3 ZC GdG�1: (13)

Here contour C around the Fermi point (the pole of G) istaken in the ! = 0 plane. For the noninteracting fermi-ons we have N2 = 1. Further, if the interactions areintroduced, the Green function is changed: G ! G+ �G.If the interactions are such that f�G(0;p); �3g = 0, then�N2 = 0. This means that N2 = 1 until the phasetransition is encountered. For example, if the exter-nal magnetic �eld in z-direction is introduced we havef�G(0;p); �3g = 0 (see, for example, [12]). At a �rstlook, it is not obvious, that with the Coulomb interac-tion turned on N2 remains the topological invariant.However, using the above mentioned symmetry con-siderations we rewrite this function in the absence ofexternal �elds as follows:N2=� 14�iTr�3ZC [dg3�3+(dg; �)][g3�3+(g; �)]g23 + g2 == 12� ZC �abnadnb1 + g23=g2 ; (14)where n1 = p1=p[p1]2 + [p2]2; n2 = p2=p[p1]2 + [p2]2,and it is implied that ~h(0;p2) 6= 0. As it was mentionedabove, when the functions ga are smooth enough, wehave g3(0;p) = 0 and, therefore, again N2 = 1. Thismeans that the pole of the Green function (the Fermipoint) is topologically stable if the symmetries consid-ered above take place.5. Topological invariant in space (!;p). Belowwe generalize the construction of the topological invari-ant N2 considered above. The resulting constructionuses the Green function de�ned on the surface that en-closes the Fermi point in !�p-space. The consideredconstruction also works for nonzero g3(0;p). Let us de-�ne the function in momentum spaceH = G�3q 12Tr (G�3)2 : (15)We can express H through the functions ga men-tioned above: H = na�a, na = ga=jgj, jgj = pgaga,a = 1; 2; 3. Now let us consider the following integralover closed surface � in momentum space such that Gdoes not have poles on �:N2 = 116�iTr Z�H dH ^ dH == 18��abc Z� na dnb ^ dnc: (16)The given expression (16) for the invariantN2 is, ob-viously, reduced to (13) in the case, when g3(0;p) = 0.Without interactions and without external magnetic �eldG has the pole at p = ! = 0 that corresponds to the�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 3 { 4 2012



Fermi point in graphene as a monopole in momentum space 171Fermi point. In this case n3(!;p) = !=p!2 + p2,n(!;p) = p=p!2 + p2, and N2 = 1 for any surface thatencloses the pole. When the interaction with the elec-tromagnetic �eld is turned on, the value of N2 for thesurface that encloses this pole remains equal to unityuntil a phase transition is encountered. The importantadvantage of the given formulation is that we alreadydo not need the condition g3(0;p) = 0 to be satis�ed.We only need g0 = 0. The situation, when g0 = 0 andg3(0;p) 6= 0 may appear in the other (2 + 1)-systemsor even in the e�ective �eld model of graphene for theinhomogenious gauge or when some of the symmetriesare broken dynamically.6. Fermi point as a monopole. As it was ex-plained above, ~G = �iG�3 2 su(2) out of the re-gion, where G has poles. We can diagonalize ~G viaSU(2)=U(1) transformations:~G = V y(qg23 + g2�3)V; (17)V is de�ned up to the U(1) transformation V ! e��3V .That's why here V 2 SU(2)=U(1) � S2. We can chooseV to be smooth on the surface � except for a small vicin-ity 
 of a certain point. We have �2[SU(2)=U(1)] = Z.Actually the invariant N2 is equal to the degree of themapping S2 ! SU(2)=U(1):N2 = 116�iTr Z��
 V y�3V d[V y�3V ] ^ d[V y�3V ] == � 14�iTr Z��
 �3dV ^ dV y == � 14�iTr Z��
 �3d[V dV y] == 14�iTr Z@
 �3V dV y: (18)Now we de�ne the gauge �eld in momentum spaceB = �iV dV y, B is smooth everywhere except for thestring ended at the position of the pole of G. The �eldstrength of B vanishes everywhere except for the men-tioned string. The position of the string (but not thepositions of its ends) can be changed by the U(1) trans-formations V ! e��3V . The third component of thegauge �eld B = 12TrB�3 is the U(1) �eld. The positionof the corresponding Dirac monopole coincides with thepole (or zero) of G. The position of the Fermi pointwithout interactions coincides with the position of themonopole constructed of B in momentum space. Theposition of the antimonopole coincides with the zero ofG (placed at the in�nity). Monopole and antimonopoleare connected by the Dirac string. This pattern cannotdisappear until the phase transition is encountered.

7. N2 in 4D notations. In 4D-notations Greenfunction (6) has the form:G =  G 00 �2G�2 ! = i ~G 00 ��2 ~G�2 !�4: (19)Again, we de�ne the function in momentum space: H == �iG�4p1=4�Tr (G�4)2 . We can expressH through three realfunctions ga mentioned above: H = �n1�1 � n2�2 ++ n3�4, na = ga=jgj, jgj = pgaga, a = 1; 2; 3. Now thetopological invariant can be expressed asN2 = 132�Tr Z�H dH ^ dH�3�5 == 18��abc Z� na dnb ^ dnc: (20)We denote ~G = �iG�4, ~G can be diagonalized viathe SO(4)=[SU(2)
 U(1)] transformations:~G = Vy(qg23 + g2�4)V: (21)Here V =  V 00 �2V �2 !, V can be chosen in theform: V = exph i(n2�1 � n1�2)arccosn32p1� n23 i: (22)8. Momentum space topology of lattice reg-ularized model. Staggered fermions are unique forthe graphene monolayer because in this regularizationthe doublers of the one-component fermion play the roleof the components of two Dirac spinors. This reg-ularization has been used in practical numerical sim-ulations of the considered model [9, 13]. However,the additional doublers ever appear in lattice propaga-tor as it will be explained below. Staggered fermionvariables 	 are obtained via the spin diagonalization: x = �x11 �x22 �x33 �x44 	x. Here always x3 = 0. In termsof 	 the free fermion action has the form:S =Xx �m �	x	x ++ 12 Xi=1;:::;4[ �	x�xi	x+î � �	x+î�xi	x]�;�xi = (�1)x1+:::+xi�1 : (23)We keep the only component of 	. As a result the dou-blers play the role of the components of the two originalspinors. In order to reconstruct the original spinor and
avor indices of the fermions we consider the lattice witheven number of lattice spacings in each direction. Let�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 3 { 4 2012



172 M.A. Zubkovus subdivide the lattice into the blocks consisted of ele-mentary cubes. We denote the coordinates of the blocksby yi. Therefore, the coordinates of the lattice sites arexi = 2yi + �i; �i = 0; 1. We de�ne the new �elds [14]:[�y]�a = 18X� [��11 ��22 ��44 ]�a	2y+�: (24)Here index � = 1; :::; 4 is the spinor index while a == 1; :::; 4 is the 
avor index. Matrices � have 4 � 4components. But not all of these components are in-dependent. We have the following constraint on �:�3�5�y�5�3 = �y. There exists the representationof gamma-matrices such that the matrices � have theform: � =  A 00 B !. That's why we have two 
avorsof positive i�3�5 chirality and two 
avors of negativei�3�5 chirality that is two 
avors of 4-component Diracspinors. Without interactions in terms of � the propaga-tor in momentum representation (of the blocked lattice)has the form [14]:~G = �ih���i = nXa �a 12sin ka �� ihm�Xa 12(1� cos ka)�5 
 T5Tiio�1: (25)Here Ti = �Ti acts on the 
avor indices while �-matricesact on the Dirac indices. Momenta k are k1 = 2�K1Nx=2 ,k2 = 2�K2Ny=2 , k4 = 2�K4+�Nt=2 , K1;K2;K4 2 Z. In this reg-ularization the mass term is necessarily added. At theend of the calculation one must set m = 0. This Greenfunction turns to the form (19) with G in the form (9) inthe continuum limit at m = 0. For m = 0 the only poleof the Green function at p = 0 appears. The fermiondoublers do not have such poles. However, zeros of thefunctions ga, a = 1; 2; 4 appear at pa = �ka, ka 2 Z. Atany value of m vector n mentioned above has the follow-ing components: na = ga=pgaga, g1 = iTrG�4�1=4,g2 = iTrG�4�2=4, g3 = �iTrG=4. Without interac-tions we have na = sin kapPa sin2ka . From this expressionwe obtain 4 monopole { antimonopole pairs in momen-tum space placed in the positions of the fermion dou-blers. For the surface that encloses any of these pointsof the Brillouin zone we obtain the values N2 = �1.This demonstrates that the lattice formulation does noteliminate monopole in momentum space correspondingto the physical pole of the Green function. However, thisformulation also gives monopoles that correspond to theunphysical doublers.When the interaction is switched on the practical pre-scription for the calculation of the vector n is na(k) == ga(k)=pga(k)ga(k), a = 1; 2; 4 with

ga(k) = i16N21N22N2t Xy;z eik(z�y)X�;�0(�1)�1+:::+�a�1 �� �(�0i � [�i + �ia]mod2)hG(2y + �; 2z + �0)i:(26)Here hG(2y + �; 2z + �0)i is the staggered fermion one-component propagator in the external �eld averagedover the con�gurations of the U(1) gauge �eld A4 andover the pseudofermion con�gurations (the latter givethe fermion determinant in the averaging over gauge�elds).Using expression (22) we may calculate the value ofV 2 SU(2)=U(1) at any point of the momentum spacelattice. Next, we may de�ne the U(1) gauge �eld Bat any link of this momentum lattice via the followingequation: cos� eiBxy sin� ei��sin� e�i� cos� e�iBxy ! = VxV yy : (27)The position of the monopole is given byj = 12� �d[dBmod2�]. We expect that the patterndescribed above with 4 monopole - antimonopole pairsin momentum space will remain until a phase transitionis encountered.9. Conclusions and discussion. In this paper weextend the construction of the topological invariant N2to ! � p-space. The suggested construction works forthe case when the Coulomb interaction between the qua-siparticles is present. We also construct the gauge �eldin momentum space that has vanishing �eld strengtheverywhere except for the poles and zeros of the Greenfunction (and the strings that connect them). The po-sitions of poles and zeros themselves coincide with thepositions of monopoles extracted from the given gauge�eld.The 8� 8 Green functions of the fermion quasiparti-cles are reduced to (2�2)-matrices, and even further, tothe elements of su(2). These matrices can be representedas iG�3 = g3�3+ga�a with real g3;ga. The constructedtopological invariant catches zeros and poles of G. Ifinteractions are absent, N2 = 1. When the Coulombinteraction is turned on, the equation N2 = 1 holds un-til the phase transition is encountered. This means thatthe pole in G cannot disappear until the phase transitionoccurs.The system may be transferred to various phases,where di�erent symmetries of the initial system are bro-ken. There may appear di�erent fermion condensates[5{9]. The phase structure of the e�ective �eld model ofgraphene is still unknown. Topology of momentum spacemust have the relation to this phase structure. The con-structed invariant N2 and the monopoles in momentum�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 3 { 4 2012



Fermi point in graphene as a monopole in momentum space 173space have direct connection only to the phase that in-cludes the noninteracting system. The transition to theother phas(es) may be accompanied with the change ofN2. The transition between the new phases may haveconnection to the other topological invariants. In par-ticular, the topological invariants for the 2 + 1 gappedsystems enter the expression for the quantized Hall con-ductivity [10, 12, 15, 16]. Also it is worth mentioningthat in the presence of the �nite chemical potential theFermi surface appears that is related to the invariantN1[10].The construction presented here is intended for theuse mainly in lattice simulation of the e�ective �eld the-ory of graphene at vanishing chemical potential and inthe absence of external �elds (for the review of recent nu-merical investigations of the model see [6, 9, 13] and ref-erences therein). We expect that the phase transition(s)may take place to the phase(s), where chiral symmetryof the noninteracting system is broken [7] in a certainway. The transition to the new phase must lead to thechange of the momentum space topology. The behaviorof the monopoles in momentum space constructed hereare expected to be related intimately to the mechanismof the phase transition(s) and to the nature of the newphase(s). Their investigation may also be important forthe understanding of the role of doublers in various lat-tice discretizations of the Fermion systems.The author kindly acknowledges private communica-tion with G.E.Volovik, and discussions with members ofthe lattice ITEP group M.I. Polikarpov, P.Buividovich,V.I. Zakharov, O.Pavlovsky, M.Ulybyshev. This workwas partly supported by RFBR grants #09-02-00338,11-02-01227, by Grant for Leading Scienti�c Schools679.2008.2. This work was also supported by the Fed-eral Special-Purpose Programme 'Cadres' of the RussianMinistry of Science and Education, by Federal Special-Purpose Programme #07.514.12.4028.10. Appendix. Let us denote �� = �y�3. Then weintroduce new function ~G as G = i ~G�3 and represent itin the following form:i ~G(x)= 1Z Z D��D�DA��(0)�(x)expn�12 Z d4x[@IA4]2� Z d3x��([@4 � igA4]�3 � [@1]�1 � [@2]�2)�o: (28)We consider severar cases, when the transforma-tional properties of the action leads to symmetries ofthe Green function.Let us consider the following transformation � !! i�2[��]T, �� ! �i�T�2; A4(x) ! A4(�x) (remindthat � and �� are independent anticommuting variables),x! �x. Using this transformation we obtain:

Sf = Z d3x��([@4 � igA4]�3 � [@1]�1 � [@2]�2)�!! Z d3x�T�2([�@4�igA4]�3+[@1]�1+[@2]�2)�2��T== Z d3x�T([@4 + igA4]�3 � [@1]�1 + [@2]�2)��T == Z d3x��([@4 � igA4]�3 � [@1]�1 � [@2]�2)�: (29)Measure over �� and the gauge �eld action are alsoinvariant under this transformation. As a result we ob-tain~Gab(x) = h��a(0)�b(x)i = �ac�bdh�c(0)��d(�x)i == �ach��d(�x)�c(0)i�db == �ach��d(0)�c(x)i�db = �[�2 ~GT (x)�2]ab: (30)This implies g0(!;p) = �g0(!;p) = 0, g3(!;p) == g3(!;p), and g(!;p) = g(!;p).Analogue of CP-transformation corresponds to� ! �1[��]T, �� ! ��T�1, x ! �x; A4(x4; �x) !! �A4(x4;��x). In a similar way we obtain:Sf = Z d3x��([@4 � igA4]�3 � [@1]�1 � [@2]�2)�!! Z d3x�T�1([�@4�igA4]�3�[@1]�1�[@2]�2)�1��T == Z d3x�T([@4 + igA4]�3 � [@1]�1 + [@2]�2)��T == Z d3x��([@4 � igA4]�3 � [@1]�1 � [@2]�2)�: (31)That's why~Gab(x)=h��a(0)�b(x)i=��1ac�1bdh�c(0)��d(x4;��x)i== �1ach��d(x4;��x)�c(0)i�1db == �1ach��d(0)�c(�x4; �x)i�1db == [�1 ~GT (�x4; �x)�1]ab: (32)The Fourier transformation gives~G(!;p) = �1 ~GT(�!;p)�1: (33)Therefore, g0(!;p) = g0(�!;p), g3(!;p) == �g3(�!;p), and g(!;p) = g(�!;p).Rotation of the (1), (2) plane corresponds to thetransformation � ! ei��3=2�, and x ! ei��2x with theangle �. We have:~G(!;p) = e�i��3=2 ~G(!; ei��2p)ei��3=2: (34)This implies g0(!;p) = g0(!; ei��2p), g3(!;p) == g3(!; ei��2p), and g(!;p) = e�i��2g(!; ei��2p).�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 3 { 4 2012
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