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Fermi point in graphene as a monopole in momentum space
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We consider the effective field theory of graphene monolayer with the Coulomb interaction between fermi-
ons taken into account. The gauge field in momentum space is introduced. The position of the Fermi point
coincides with the position of the corresponding monopole. The procedure of extracting such monopoles during

lattice simulations is suggested.

1. Introduction. Graphene is a unique (2 + 1)-
dimensional nonrelativistic system that shares common
properties with relativistic quantum field theory. In
particular, in the effective field theory of graphene
the massless Dirac spinors appear [1-4]. When the
Coulomb interaction is taken into account, the effective
Lorentz symmetry is broken. The phase structure of
the model may be changed when the external conditions
are changed (that may lead, say, to the change of Fermi
velocity vr) [5-9]. Change of the phase structure of the
model must be accompanied with the deformation of the
momentum space topology [10, 11]. Therefore, it is im-
portant to investigate various topological invariants in
momentum space of the effective field model.

In general in 3D the Fermi points are not topologi-
cally stable [10]. This is because m2(GL(N,C)) = 0 for
N > 2. The N x N Green function in momentum space
belongs to GL(N, C). That’s why topological triviality
of mapping Ss — GL(N,C) does not allow topological
stability of the Green function’s poles in general case.
However, if a certain symmetry is present that reduces
the size of the space of the Green functions, the topo-
logical stability becomes possible [11, 7]. In particular,
the 3D-model of graphene monolayer has such a sym-
metry that effectively reduces space of the Green func-
tions considerably. As a result, the topological invariant
N, appears. This invariant is expressed through Green
function at zero frequency w = 0 and is an integral over
the closed contour C around Fermi point in the plane of
2D momenta p (see, for example, [11]). The important
advantage of the existence of this invariant is that the
pole of the Green function cannot disappear without a
phase transition. It is worth mentioning, however, that
this construction is less natural than that of the invariant
N3 of 4D-theory [10]. This is because only the structure
of w = 0 plane in momentum space is reflected by N.
Moreover, the given construction was introduced when
Coloumb interaction between quasiparticles is neglected,
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and in the case, when these interactions are present, it
requires an additional investigation.

In this paper we extend the construction of N> to the
effective field model of graphene in such a way that the
topological invariant is written as an integral over the
surface in 3D momentum space (w, p). In the form pre-
sented here this invariant works also for the case, when
the Coulomb interaction is present. We show that when
the Green function is smooth enough, our construction
can be reduced to the original construction of As. In
addition, we present the definition of the gauge field in
momentum space such that the positions of the corre-
sponding monopoles coincide with the positions of the
poles or zeros of the Green function. This construc-
tion is intended mainly to be used during lattice simu-
lations. We also suggest the procedure of extraction the
monopoles in momentum space for the lattice discretiza-
tion with staggered fermions.

2. The field theoretical effective model for
grapheme. The low energy effective model of graphene
may be derived [1-3] starting from the simple non-
relativistic Hamiltonian that describes the interactions
of electrons that belong to neighbor Carbon atoms. The
carbon atoms of graphene form a honeycomb lattice with
two sublattices A and B (or the triangular form). Fur-
ther we denote the lattice spacing by a. Let us introduce
vectors that connect a vertex of the sublattice A to its
neighbors (that belong to the sublattice B): 1; = (—a,0),
I, = (a/2,aV/3/2), I3 = (a/2,—av/3/2). The Hamil-
tonian has the form

H=-tY Z[zﬂ(ra)zp(ra +1;) +

acA j=1

+ 9T (e + )6 ()] (1)

Here t is the hopping parameter, operator 9! creates
electrons at the points of the lattice.

Let us define two electron fields in momentum space
that correspond to two sublattices:
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Vall) = 3 3 dlra)em 1),

acA

Yulk) = o 3 wlrg)e . 2)
BeB

Here V is the number of points in the sublattice A. The
Brillouin zone is a hexagon with opposite sides identi-
fied. There are two different vertices of the hexagon
that are denoted K, K_. Quasiparticle energy van-
ishes at these points. We expand ¢ around K, K_,
denote ¢f,3(q) = ¢a,B(K+ + q) and introduce the 4-

component field ¥ = (4, 5, ¥ 5, ¥p) " -

At low energy the effective field theory appears. Tak-
ing the Fourier transform from q to the coordinate space
we come to the field — theoretic formulation of the model:

H-= / da! (x) Dy (x), (3)

where D has the form of the usual Dirac operator taken
on the 2D hypersurface z3 = 0: D = —ivpy°7%d,,
a = 1,2, where vp = (3ta)/2 is the Fermi velocity (that
is about 1/300). Here, v are the gamma-matrices in
the representation to be specified below. Let us remind
that we started from the nonrelativistic Hamiltonian and
completely disregarded spin degrees of freedom. Now we
take them into account adding a new index to the field .
We assume it has two spin components. In hamiltonian
(3) gamma-matrices act on the pseudospin index while
the true spin operator does not enter the Hamiltonian.
We consider the interaction between quasiparticles
due to the photon exchange (A is the 3 + 1 electromag-
netic field). Let us perform the Wick rotation, the rescal-
ing of time, and gauge fields: t — iz* /vp A° — i,/ A*,

y 1
A— \/WA‘

Further we denote g = e/,/vr. Therefore, the ana-
logue of the fine structure constant is ap = a/vp ~

~ 300/137 ~ 2. We also introduce Euclidean Dirac
matrices that satisfy {I';,[';} = 20;;:

1-\4 _ 03 0 Fl _ _Ul 0
0 O3 ’ 0 —01 ’

F2 _ —09 0 F3 _ 0 —02
0 02 ’ —02 0 ’

R aeps (10
ioca 0 )’ 0 -1/’

¥ =¢*T (4)
We introduce finite temperature 7' via taking an in-
tegral over z? within the interval [0,vr/T] and adopt-

ing the periodic in z* boundary conditions. The chem-
ical potential is assumed to be equal to zero. Due to
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vp ~ 1/300 < 1 the fluctuations of A, are suppressed
and we neglect them in the functional integral. We arrive
at the partition function:

Z = /DzZJDdJDAeXp{—% /d‘*:zr(61A4)2 -

- /d3mZA[(a4 —igA,)T* + aara]m},
a=1,2;1,J=1,2,3. (5)

Here index A = 1,2 belongs to the spin degrees of free-
dom.

3. Green functions. It is worth mentioning that
the Green function has to be considered in a certain
gauge. The gauge freedom of the system corresponds
to the transformation A4 — A4 + 9sa(z?*), ¥ — €.
We may fix this gauge freedom via implying a certain
gauge fixing condition. For example we may choose the
condition A4(z%,z) = 0 for a certain 3D-position z. The
model at finite temperature, i.e., with periodic bound-
ary conditions along z* should be considered with care.
When the system is considered in lattice regularization,
the value of A4 on a certain point (z§,z) must not be
fixed. This choice of the gauge might appear to break
general properties of the Green functions (see Appendix)
as it introduces the selected point in plane z — y. We
may instead fix another gauge minimizing the functional
[ A3d*z with respect to the gauge transformations. Fur-
ther we imply that the given gauge is fixed and the gauge
fixing condition is inserted into the functional measure
over Ay.

Fermion Green function has the form:

G = (lv,) = [ D¥'DUDAYLY, x
xexp{—%/d4z(81A4)2—/d3m—b[(34 —igAy ) +
+aa1“a¢]}, a=1,2,1,J=1,2,3. (6)

In order to reveal the 3D nature of the system let us
consider the following representation of the spinor field:

¢z< X+ ) (7)
O2X—

In terms of x+ and x_ the Green functions are:
1
Grs = / Dx' DxD AxL ()x=(y)
1
X exp{—g/d‘lx(aﬂh)z -
- /d3$X—T03[(34 —igAq)os — 0101 — O202|x— —

- /d3$X+T0'3[(64 — igA4)U3 — 610'1 — 6202]X+}. (8)
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We have, obviously, G+ = G__ = G. At the same
time Gy4 = (xl(x)x;(y)) = 0. We also imply that the
Green function is diagonal in spin index. That’s why G
can be understood as the 2 x 2-matrix. On the language
of x+ different I's chiralities correspond to the states
with x4 = +x_. Different I'; chiralities correspond to
the states with x = %iy;, (I'sI's chiralities correspond
to x+ = 0. In momentum space the 2 x 2-matrix G can
be expressed as

g(w,p) = /d3$g(0,x)eiwz4+i(px) —
= l[go(w;p) + ga(W,p)ga’]U3, a= 1, 2’3 (9)

Here vectors p,x are two component.
Direct calculation gives

1 1
= E/DAeXp[—E/d4$(61A4)2

X Det2 [2(84 — igA4)0'3 — 2'610'1 — 2'620'2] X

i

X . 10
2(84 —igA4)U3 —ialo'l —i620203 ( )
Operator Q = i[04 —igAa)os—i[01]01 —i[02]02 is Her-
mitian for any real A4. That’s why we come to the con-
clusion that the operator iGos is also Hermitian. This
means that the functions g, (w, p),a = 0,1, 2,3 are real.
As a results —iGos belongs to u(2). Considering sym-
metries of the Green function, we come to the following
form of G (see Appendix):
7w lpP),

g(w,p) = ph (w2 [pf?),
FolpP) = =F(~wlpP)- (11)

That’s why iGos € su(2). If in addition, the scale in-
variance is not broken (in particular, 7' = 0), and the
functions f,h are smooth enough, we have the further
simplification:

gO(wap) = 07 gs (va) =

g3(wap) = ﬁf(;?)a
2
g(w,p) = ﬁ h(;?) (12)

4. Topological invariant at w = 0. In some publi-
cations (see, for example, [11]) the following expression
has been considered that is shown to be a topological
invariant both with and without external magnetic field
when the interaction with A4 is switched off:

_ 1 O
No = =Troy /C Gdg. (13)

Here contour C around the Fermi point (the pole of G) is
taken in the w = 0 plane. For the noninteracting fermi-
ons we have Ny = 1. Further, if the interactions are
introduced, the Green function is changed: G — G+ 4G.
If the interactions are such that {6G(0,p), o3} = 0, then
0N, = 0. This means that A = 1 until the phase
transition is encountered. For example, if the exter-
nal magnetic field in z-direction is introduced we have
{6G(0,p),03} = 0 (see, for example, [12]). At a first
look, it is not obvious, that with the Coulomb interac-
tion turned on N> remains the topological invariant.

However, using the above mentioned symmetry con-
siderations we rewrite this function in the absence of
external fields as follows:

N— rI‘I‘ / dg30'3+ dga )][92303+(g70)]:
4mi gi+g
€apndnb
271' cl+g3/g?’

where nl = p'/ /PP + PP, n? = p*/ /PP + BT,
and it is implied that (0, p?) # 0. As it was mentioned
above, when the functions g, are smooth enough, we
have g3(0,p) = 0 and, therefore, again N3 = 1. This
means that the pole of the Green function (the Fermi
point) is topologically stable if the symmetries consid-
ered above take place.

5. Topological invariant in space (w,p). Below
we generalize the construction of the topological invari-
ant A, considered above. The resulting construction
uses the Green function defined on the surface that en-
closes the Fermi point in w—p-space. The considered
construction also works for nonzero g3(0,p). Let us de-
fine the function in momentum space

H=— 9 (15)
3Tr (Gos)?

(14)

We can express H through the functions g, men-
tioned above: H = 1,04, Nne = ga/lgl, 19] = /9aGa,
a = 1,2,3. Now let us consider the following integral
over closed surface ¥ in momentum space such that G
does not have poles on X:

Ny = Tr/?-td’H/\dH—
1673

1

= gefﬂw /En“ dnb A dn®. (16)

The given expression (16) for the invariant N, is, ob-
viously, reduced to (13) in the case, when g3(0,p) = 0.
Without interactions and without external magnetic field
G has the pole at p = w = 0 that corresponds to the
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Fermi point. In this case nzg(w,p) = w/+y/w? + p2,
n(w,p) = p/y/w? + p?, and N> = 1 for any surface that
encloses the pole. When the interaction with the elec-
tromagnetic field is turned on, the value of N> for the
surface that encloses this pole remains equal to unity
until a phase transition is encountered. The important
advantage of the given formulation is that we already
do not need the condition g3(0,p) = 0 to be satisfied.
We only need go = 0. The situation, when go = 0 and
g3(0,p) # 0 may appear in the other (2 + 1)-systems
or even in the effective field model of graphene for the
inhomogenious gauge or when some of the symmetries
are broken dynamically.

6. Fermi point as a monopole. As it was ex-
plained above, G = —iGo; € su(2) out of the re-
gion, where G has poles. We can diagonalize G via
SU(2)/U(1) transformations:

G =V'(\/g} +g%0m)V, (17)

V is defined up to the U(1) transformation V — e*?3V.
That’s why here V € SU(2)/U(1) ~ Sz. We can choose
V to be smooth on the surface ¥ except for a small vicin-
ity Q of a certain point. We have m3[SU(2)/U(1)] = Z.
Actually the invariant N> is equal to the degree of the
mapping S; — SU(2)/U(1):

1
Ny = —— ViesVd[ViesVIAd[VTesV] =
167TZ $_Q
= —i,Tr o3dV AV =
47” >0
1
=-——Tr o3d[VdVT] =
4:7['7/ T_Q
1
=—Tr dvt. 1
4:7l'i a0 U3V V ( 8)

Now we define the gauge field in momentum space
B = —iVdV?t, B is smooth everywhere except for the
string ended at the position of the pole of G. The field
strength of B vanishes everywhere except for the men-
tioned string. The position of the string (but not the
positions of its ends) can be changed by the U(1) trans-
formations V. — e®*?3V. The third component of the
gauge field B = 1Tr Bos is the U(1) field. The position
of the corresponding Dirac monopole coincides with the
pole (or zero) of G. The position of the Fermi point
without interactions coincides with the position of the
monopole constructed of B in momentum space. The
position of the antimonopole coincides with the zero of
G (placed at the infinity). Monopole and antimonopole
are connected by the Dirac string. This pattern cannot
disappear until the phase transition is encountered.
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7. N> in 4D notations. In 4D-notations Green

function (6) has the form:
; 0
g - )r.. 19
0 —02Go2

G:<g 0 >:i
0 o02Go2

Again, we define the function in momentum space: H =

= ——=1Gls _ We can express H through three real
/1/4—Tr (GT4)2
functions g, mentioned above: H = —n;I'y — nol'y +

+n3ly, ng = ga/|g|a |g| = v9Y9aY9a; @ = 1,2,3. Now the
topological invariant can be expressed as
1
No=_—Tr / HdHAJHTI3T5 =
327 »
1
= geubc /En“ dn® A dn®. (20)
We denote G = —i1GIy, G can be diagonalized via
the SO(4)/[SU(2) ® U(1)] transformations:

G =VTi(y/g2 + g2Ty)V. (21)

V 0
Here V = , V can be chosen in the
0 0'2V0'2
form:
Vo exp[i(nzal — nlaz)arccosng]' (22)
2y/1—n2

8. Momentum space topology of lattice reg-
ularized model. Staggered fermions are unique for
the graphene monolayer because in this regularization
the doublers of the one-component fermion play the role
of the components of two Dirac spinors. This reg-
ularization has been used in practical numerical sim-
ulations of the considered model [9, 13]. However,
the additional doublers ever appear in lattice propaga-
tor as it will be explained below. Staggered fermion
variables ¥ are obtained via the spin diagonalization:
Wy = I T52T5°05* ¥, Here always 3 = 0. In terms
of ¥ the free fermion action has the form:

S = Z(m U, U, +
z
[‘i’wawi‘l’w_g - ‘i’z+2awiq’w])a

Qs = (1)t Tt (23)

We keep the only component of ¥. As a result the dou-
blers play the role of the components of the two original
spinors. In order to reconstruct the original spinor and
flavor indices of the fermions we consider the lattice with
even number of lattice spacings in each direction. Let
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us subdivide the lattice into the blocks consisted of ele-
mentary cubes. We denote the coordinates of the blocks
by y;. Therefore, the coordinates of the lattice sites are
z; = 2y; + ni,m; = 0,1. We define the new fields [14]:
@05 = £ ST TPT Wy (2)
n
Here index a = 1,...,4 is the spinor index while a =
= 1,...,4 is the flavor index. Matrices ® have 4 x 4
components. But not all of these components are in-
dependent. We have the following constraint on &:
[s5®,sI's = ®,. There exists the representation
of gamma-matrices such that the matrices & have the

A0

form: & = . That’s why we have two flavors

of positive iI'3s['s chirality and two flavors of negative
il'3T's chirality that is two flavors of 4-component Dirac
spinors. Without interactions in terms of ® the propaga-
tor in momentum representation (of the blocked lattice)
has the form [14]:

G = —i(3d) = {Z Fa%sinka -
g [m -3 %(1 — coskq)Ts ® TsTi] }71. (25)

Here T; = I'T acts on the flavor indices while I'-matrices

act on the Dirac indices. Momenta k are k; = %’%,
ky = 3;”}2 ky = 2"1{,5‘;;”, K., K;,K, € Z. In this reg-

ularization the mass term is necessarily added. At the
end of the calculation one must set m = 0. This Green
function turns to the form (19) with G in the form (9) in
the continuum limit at m = 0. For m = 0 the only pole
of the Green function at p = 0 appears. The fermion
doublers do not have such poles. However, zeros of the
functions g,, a = 1, 2,4 appear at p, = 7k,, ko € Z. At
any value of m vector n mentioned above has the follow-
ing components: 1, = go/+/gada, 91 = iTr GT'4I'1/4,
g2 = iTr G4y /4, g3 = —iTr G/4. Without interac-

Sin kg From this expression

tions we have n, = ——=—a .
V2. sin?kg

we obtain 4 monopole — antimonopole pairs in momen-
tum space placed in the positions of the fermion dou-
blers. For the surface that encloses any of these points
of the Brillouin zone we obtain the values Ny = =+1.
This demonstrates that the lattice formulation does not
eliminate monopole in momentum space corresponding
to the physical pole of the Green function. However, this
formulation also gives monopoles that correspond to the
unphysical doublers.

When the interaction is switched on the practical pre-
scription for the calculation of the vector n is ny(k) =

= ga(k)/\/90(k)ga(k), a = 1,2,4 with

i .
W (k) = ik(z—y) —1)ymtetne-
9(k) = TeNaNgNE Zy ¢ 2 (1) 8

mn'
x 8(n; — [ni + 0iaJmod 2)(G(2y + 1,2z +7')).(26)

Here (G(2y + 1,2z + 7n')) is the staggered fermion one-
component propagator in the external field averaged
over the configurations of the U(1) gauge field A4 and
over the pseudofermion configurations (the latter give
the fermion determinant in the averaging over gauge
fields).

Using expression (22) we may calculate the value of
V € SU(2)/U(1) at any point of the momentum space
lattice. Next, we may define the U(1) gauge field B
at any link of this momentum lattice via the following
equation:

iBay b i
co?(ﬁ e ' sing e; _v, VJ. (27)
—singe "X cosgpe ey

The position of the monopole is given by
j = %*d[dB mod 2w]. We expect that the pattern
described above with 4 monopole - antimonopole pairs
in momentum space will remain until a phase transition
is encountered.

9. Conclusions and discussion. In this paper we
extend the construction of the topological invariant N>
to w — p-space. The suggested construction works for
the case when the Coulomb interaction between the qua-
siparticles is present. We also construct the gauge field
in momentum space that has vanishing field strength
everywhere except for the poles and zeros of the Green
function (and the strings that connect them). The po-
sitions of poles and zeros themselves coincide with the
positions of monopoles extracted from the given gauge
field.

The 8 x 8 Green functions of the fermion quasiparti-
cles are reduced to (2 x 2)-matrices, and even further, to
the elements of su(2). These matrices can be represented
as 1Gos = g303 + 8,0, with real g3, g,. The constructed
topological invariant catches zeros and poles of G. If
interactions are absent, A5 = 1. When the Coulomb
interaction is turned on, the equation N5 = 1 holds un-
til the phase transition is encountered. This means that
the pole in G cannot disappear until the phase transition
occurs.

The system may be transferred to various phases,
where different symmetries of the initial system are bro-
ken. There may appear different fermion condensates
[6-9]. The phase structure of the effective field model of
graphene is still unknown. Topology of momentum space
must have the relation to this phase structure. The con-
structed invariant A5 and the monopoles in momentum
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space have direct connection only to the phase that in-
cludes the noninteracting system. The transition to the
other phas(es) may be accompanied with the change of
N,. The transition between the new phases may have
connection to the other topological invariants. In par-
ticular, the topological invariants for the 2 + 1 gapped
systems enter the expression for the quantized Hall con-
ductivity [10, 12, 15, 16]. Also it is worth mentioning
that in the presence of the finite chemical potential the
Fermi surface appears that is related to the invariant A}
[10].

The construction presented here is intended for the
use mainly in lattice simulation of the effective field the-
ory of graphene at vanishing chemical potential and in
the absence of external fields (for the review of recent nu-
merical investigations of the model see [6, 9, 13] and ref-
erences therein). We expect that the phase transition(s)
may take place to the phase(s), where chiral symmetry
of the noninteracting system is broken [7] in a certain
way. The transition to the new phase must lead to the
change of the momentum space topology. The behavior
of the monopoles in momentum space constructed here
are expected to be related intimately to the mechanism
of the phase transition(s) and to the nature of the new
phase(s). Their investigation may also be important for
the understanding of the role of doublers in various lat-
tice discretizations of the Fermion systems.
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the lattice ITEP group M.I. Polikarpov, P. Buividovich,
V.I. Zakharov, O.Pavlovsky, M. Ulybyshev. This work
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11-02-01227, by Grant for Leading Scientific Schools
679.2008.2. This work was also supported by the Fed-
eral Special-Purpose Programme ’Cadres’ of the Russian
Ministry of Science and Education, by Federal Special-
Purpose Programme # 07.514.12.4028.

10. Appendix. Let us denote ¥ = x'o3. Then we
introduce new function G as G = iGos and represent it
in the following form:

ig(a:):%/D)‘(DxDA)_((O)X(x)exp{—%/d4x[81A4]2
- / dBrx([04 — igAd)os — [Bi]or — [az]az)x}. (28)

We consider severar cases, when the transforma-
tional properties of the action leads to symmetries of
the Green function.

Let us consider the following transformation x —
— ioe[X]Y, x — —ixTos, A4(z) — Ay4(—2) (remind
that x and ¥ are independent anticommuting variables),
x — —x. Using this transformation we obtain:
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Sy = /d%)‘(([&; —igA4los — [O1]or — [O=]o2)x —
— [dBexT oy ([~04—igAs)os+[01]o1+][02])00) oo x T =
= [ daxT (04 + igAdos - (Bilos + ulon)” =
= [ dax(os - ighalos ~ (0ilor - lon)x. (29)
Measure over x+ and the gauge field action are also
invariant under this transformation. As a result we ob-
tain

Gab(z) = (Xa(0)x5(7)) = €aceba(xc(0)Xa(—2)) =
= €ac(Xa(—z)xc(0))eaw =
= €ac(Xa(0)xc(7))eay = —[02GT ()02 ]qp- (30)
This implies go(w,p) = —go(w,p) = 0, g3(w,p) =
=93 (w7 p)7 and g(w7 p) = g((b’, p)
Analogue of CP-transformation corresponds to
x = alxlt, x = —x%Yo1, x = —x,A4(24,%) —
— —A4(x4, —Z). In a similar way we obtain:

Sy = /d3$>_<([34 — igAalos — [O1]o1 — [Oa2]o2)x —
— /d3$XTUl([—84—igA4]U3—[61]0'1—[82]0'2)0'1)_(T =
- /d3“’XT([34 +igAglos — [B1]oy + [Bz]o2) X" =

= /d3$)_(([84 - igA4]U3 - [81]0'1 - [82]0'2))(. (31)

That’s why
g~ab (z):b_(a (O)Xb(z»z_o';co'l}d(XC (O)Xd(m‘l’ —])))—
= aic()‘(d(m, —f)Xc(O»U;b =
= ol (xXa(0)xc(—24, Z))oh, =
Jab-

The Fourier transformation gives
g(wap) = UlgT(_wap)al' (33)
Therefore, 9o (wa p) = gO(_wa p)a 93 (wa p) =
= _g3(_wap)a and g(wap) = g(_wap)'
Rotation of the (1), (2) plane corresponds to the
transformation y — e*??3/2y, and x — e!®?2x with the
angle ¢. We have:

g"(w,p) — efi¢03/2g"(w’ei¢azp)ei¢as/2. (34)

This implies go(w,p) = go(w,§i¢”2p), 93(W,p) _
= g3(w, €'%?2p), and g(w, p) = e~ ¥72g(w, e!*72p).
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of

All mentioned above allow to derive the general form

G:
90(@,p) =0, gs(w,p) = F(w, pI?),

g(w,p) = pfl(wz, Iplz)- (35)

Here f is odd as a function of w.
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