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Universal crossover of liquid dynamics in supercritical region

V. V. Brazhkin®), Yu.D. Fomin, A. G. Lyapin, V. N. Ryzhov, K. Trachenko*
Institute for High Pressure Physics, 142190 Troitsk, Russia

X South East Physics Network and School of Physics, Queen Mary University of London, E1 4NS London, UK

Submitted 11 January 2012

We demonstrate that all liquids in supercritical region may exist in two qualitatively different states: solid-
like and gas-like. Solid-like to gas-like crossover corresponds to the condition 7 & 79, where 7 is liquid relaxation
time and 7o is the minimal period of transverse waves. This condition corresponds to the loss of shear stiffness

of a liquid at all frequencies and defines a new narrow crossover zone on the phase diagram. We show that

the intersection of this zone corresponds to the disappearance of high-frequency sound, qualitative changes of
diffusion and viscous flow, increase of particle thermal speed to half of the speed of sound and reduction of
the constant volume specific heat to 2kp per particle. The new crossover is universal: it separates two liquid
states at arbitrarily high pressure and temperature, and even exists in systems where liquid — gas transition

and the critical point are absent overall.

A typical T'— P-diagram implies that a liquid is sepa-
rated from a gas by the boiling line ending at the critical
point and only one single state exists for all pressures
and temperatures above the critical point. In present pa-
per we propose that an important qualitative change in
a liquid behavior takes place even in supercritical state
on crossing narrow crossover zone. We begin our discus-
sion with the introduction of the liquid relaxation time
T: T is the average time between two consecutive atomic
jumps in a liquid at one point in space [1]. The motion
of an atom in a liquid consists of two types: vibrational
motion around an equilibrium position as in a solid and
diffusive motion between two neighboring positions as
in a gas, where typical diffusion distances exceed vi-
brational distances by about a factor of ten (Fig. la—c).
Therefore, atomic motion in a liquid combines both ele-
ments of the short-amplitude vibrational motion as in a
solid and the large-amplitude ballistic-collisional motion
as in a gas. This approach was successfully used for last
years to calculate the thermodynamic and dynamic prop-
erties of liquids near melting temperatures [2, 3]. In the
paper we show that the point at which the solid-like mo-
tion disappears, leaving only the gas-like motion, marks
the change of most important properties of a liquid.

The value of 7 decreases with temperature increase,
spanning many orders of magnitude. On the other
hand, the minimal (Debye) vibration period, 7o (70 =~
~ (0.1-1) ps), is weakly temperature-dependent espe-
cially at isochors, and is mostly defined by interactions
in a given system. At certain high temperature the solid-
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like vibration character ceases (Fig. la,d,e). This point
is reached when 7 becomes comparable to 7p:

T & Tp- (1)

In the following discussion, we consider 7 as the av-
erage time it takes an atom to move the average inter-
particle distance a. Then, 7 quantifies the motion en-
visaged by Frenkel [1], where an atom jumps distance a
during time 7 between two equilibrium positions at low
temperature as well as the motion at high temperature
where two equilibrium positions are absent altogether
and the motion between collisions is ballistic as in a gas.
Here, 7 is the time between collisions. We note that for
T > 79 where dynamics is mostly vibrational, the atomic
jumps take place by activation over the barrier created
by the potential energy of interaction [1]. Therefore, the
transition from solid-like vibrations to continuous gas-
like ballistic motion takes place when kinetic energy of a
particle becomes comparable to potential energy of their
interaction. Hence, condition (1) implies crudely

3ksT/2 ~ Epot. (2)

The condition (1) and other conditions considered
below correspond to approximate equality. Neverthe-
less in a liquid there are definite T'— P-conditions corre-
sponding to the loss of transverse-like vibrations in the
excitation spectra, hence we can speak about more or
less definite line instead of wide crossover. Below we
show that it leads to important qualitative changes of
the system behavior.

If observation time is smaller than 7, the local struc-
ture of a liquid does not change, and is the same as that
of a solid. This enabled Frenkel to predict that a liquid
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Fig. 1. (Color online) Examples of particle trajectories (z-
coordinate) for the Lennard—Jones (LJ) liquid at different
conditions, presented in LJ-units (p. = 0.314, T, = 1.31).
Panels (b)—(e) show selected fragments from (a). Cases
(b) and (c) correspond to the rigid state where vibrations
are present; (d) and (e) correspond to collisional motion
in the non-rigid state; both time and displacement are in
standard

should maintain solid-like shear waves at all frequen-
cies w > 2x/7 [1]. This prediction was later confirmed
experimentally for different kinds of liquids [4-6]. The
maximum oscillation frequency available in the system
is wg = 2m/79. Therefore, solid-like shear waves exist
in the range 27/7 < w < 2w /7. Consequently, con-
dition (1) (7 ~ 7p) corresponds to the complete loss
of shear waves. The ability of liquids to flow is asso-
ciated with zero shear resistance at small frequencies.
On the other hand, condition (1) marks the qualitative
change, from the physical point of view, of system elas-
tic properties: shear resistance is lost completely, at all
frequencies available in the liquid. Therefore, condition
(1) marks the crossover between a solid-like “rigid” lig-
uid, where rigidity exists in a certain frequency range
and a gas-like “non-rigid” liquid which can not sustain
rigidity at any frequency.

The qualitative change in atomic dynamics, defined
by Eq. (1), has important consequences. Lets approach
the liquid from low temperature where 7 > 79. The
speed of sound in a liquid or a solid, Vy, is defined
from the dispersion relation, w = Vzk. Using linear De-
bye approximation and taking maximum frequency w as
Debye frequency wp = 27/79, and kmax = 7/a gives
Vs = 2a/1y. Lets now approach the liquid from high
temperature where oscillatory motion is lost, and recall
that 7 is the time between two consecutive collisions over
distance a. Then, Vi, = a/7, where V4, is particle ther-
mal velocity. Therefore, condition (1) implies

The physical meaning of condition (3) is that parti-
cles cease to feel elastic resistance of the medium. We
note that Eq. (3) is based on the same physical grounds
as in Eq.(2). Indeed, the speed of sound is governed
by the elastic moduli, which are in turn proportional
to the potential energy of the system per unit volume.
However the proportionality coeflicient in (2) may sig-
nificantly (several times) differs from 1.

Another important consequence of Eq. (1) is related
to the phenomenon of “high frequency sound”, which is
the increase of the speed of sound at high frequencies.
Frenkel predicted [1] that this effect should exist for fre-
quencies w > 2x /7. The viscoelastic model was later
developed, including memory function formalism, non-
local mode coupling theory etc. [7-11]. The “high fre-
quency sound” was observed in numerous experiments,
receiving particular attention since the development of
inelastic X -ray techniques [12-15]. The condition (1) in-
deed matches to the region at which the positive disper-
sion disappears completely, because, as discussed above,
this crossover corresponds to the complete loss of shear
waves that can exist in a liquid.

The change of the character of atomic diffusion in the
liquid at the crossover (1) occurs at a particular value
of diffusion constant D*. When 7 =~ 79 at the crossover
(1), we have

D* ~ a? /6.

It was found that liquids loose their elastic properties
in the vicinity of the critical point [16,17]. Both a? and
To decrease with pressure only slightly and for crude es-
timation of the crossover (1) at moderate pressures, we
can use the condition

D=D*~D, (4)

(where D, is the diffusion constant at the critical point).
Importantly, condition (1) corresponds to the
crossover between two different qualitative temper-
ature dependencies of diffusion D and viscosity 7.

Mucema B ARIT® Tom 95 BeIm.3—-4 2012



Universal crossover of liquid dynamics in supercritical region 181

At low temperature, 7 ~ exp(U/T), where U is the
activation barrier. Then, D ~ a?/7 ~ exp(-U/T).
On the other hand, when 7 < 7y at high tempera-
ture, 7 quantifies thermal motion as discussed above:
7~ 1/Vip, ~ 1/TY?, giving D ~ T'/? for a low density
gas or D ~ T“, where « is almost constant for a dense
fluid. Therefore, condition (1) gives the crossover of D
from exponential to power-law temperature dependence.

When 7 > 79, n almost exponentially decreases with
temperature, which can be seen most easily by apply-
ing the Maxwell relation n = G, 7, where G, is the
instantaneous shear modulus. On the other hand, when
T < 19, N ~ T2, This follows from applying either
the Stokes—Einstein—-Debye relationship, n ~ T/ D or the
Maxwell relationship 7 = G, where 7 ~ 1/T*/? from
above and recalling that G, is proportional to kinetic
~T term in this regime [18]. Thus the condition (1)
corresponds to the qualitative change in the tempera-
ture behavior of viscosity from the exponential decrease
at 7 > 19 to the power increase at 7 < 79 and viscosity
minimum corresponds to a crossover from potentially
dominated to kinetically dominated regime.

It is known that constant-volume specific heat of lig-
uids in supercritical region decreases from about 3k per
particle around the melting temperature to about 3kg /2
at very high temperatures in supercritical region [19].
The initial decrease was quantitatively on the basis of
decreasing contribution of shear modes to liquid energy
with temperature [20]. In this model, the liquid thermal
energy per atom is

E/N = kgT[3 — (10/7)?].

When 7 considerably exceeds 79 at low tempera-
ture, liquid energy is close to 3kgT per atom, giving
the Dulong—Petit value of specific heat of 3kg. When 7
approaches 7y at high temperature shear waves are com-
pletely lost at all frequencies, and longitudinal modes
only contribute to the heat capacity. The thermal en-
ergy becomes 2kgT per atom, giving the specific heat
of 2kg. Therefore, the condition (1) approximately cor-
responds to the decrease of the specific heat from its
solid-state value to the value of 2kgp:

CV ~ 2kB. (5)

Further decrease of heat capacity corresponds to the
loss of longitudinal modes as the temperature is in-
creased until the gas-like state is reached with ¢y =
= 3kp/2.

Having discussed the main physical properties that
change at the crossover (1), we now provide numeri-
cal and experimental evidence supporting our proposal.
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We have studied Lennard-Jones (LJ) liquid and Soft
Spheres (SSp) liquid with n = 12 in a wide range of
parameters, from temperature T' = 0.6 (well below the
critical point) to T' = 100.0 and densities from 0.1 to 2.7
for LJ-liquid, T = (0.1-100) and density in the range
0.1-3.33 for SSp-liquid with n = 12. The number of par-
ticles in the system, depending on the density was varied
up to 4000 and 1000 for the LJ- and SSp-system, respec-
tively. The equilibration and production was simulated
for 1.5 million steps and 0.5 million steps for LJ-system
and 3.5 million and 0.5 million steps for SSp-system,
respectively. The time step was 0.001 LJ-units for LJ-
system and 0.0005 for SSP-system.

To calculate the Debye period 79, we analyzed par-
ticle trajectories. At low temperature, 79 was obtained
as the average time of oscillatory motion. The value
of 7 was calculated as time it takes a particle to move
the distance close to the average inter-particle separa-
tion. The values of 79 and 7 as well as the tempera-
ture of disappearance of solid-like vibration motion un-
der heating were also obtained from the analysis of self-
intermediate scattering function [8] at different temper-
atures. All other quantities discussed in the paper were
calculated in standard way [21]. Thermodynamic and
dynamic data for real fluids (Ar, Ne, and N5) were taken
from [19].

We have drawn the lines determined by Conditions
(1)—(5), for real substances (Ar, Ne, and N3) and model
particle systems with Lennard—Jones and soft-sphere po-
tentials (Figs.2 and 3). We have calculated points on
the phase diagram that correspond to strict equalities
T = 79, 3kT/2 = Epot, Vs = 2V, D = D, and
Cy = 2kB.

According to Fig. 2, the position of the crossover line
(Condition (1)) for Lennard-Jones system agrees with
the line determined by Condition (4) at moderate pres-
sures P < (10—10%)P, and with the lines determined by
Conditions (3) and (5) at high pressures P > 10P,. At
low pressures, the lines determined by Conditions (3)
and (5) shift from the crossover line (1) due to critical
point anomalies and loss of Debye approximation at low
densities. The Condition (2) is not directly based on
the Condition (1) and proportionality coefficient in (2)
differs from 1 significantly. For a soft-sphere system,
the lines determined by the Conditions (1)—(3), and (5)
match well over the entire pressure range (Fig.3), as no
critical point and associated anomalies exist for this sys-
tem. For the soft-sphere system, we also calculate the
line of viscosity minimum on isochors which practically
coincides with the lines defined by other criteria.

Despite the approximate way in which conditions
(2)—(5) correspond to condition (1), all the lines defined
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Fig.2. (Color online) T—P phase diagram ((a), (b), and (c)) and T'—p phase diagram (d) of the LJ-liquid in the relative
critical coordinates. Panels (a) and (d) present calculated lines defined by different criteria (see the text). Panel (b) presents
some experimental data from [19]. Stars in the panel (b) correspond to known experimental points where liquid looses shear
waves and positive dispersion (open symbol for Ar [13] and solid symbol for N3 [15]). Experimental critical isochors are also
shown in panel (b) (dashed for Ne and dashed-dotted for Ar). Experimental data for criterion (3) for nitrogen and points
(solid circles) from the simulation of the LJ-system in Fig. 2 (with the same color) are shown in panel (d). Panel (c) illustrates
narrow crossover zone according to different criteria both for LJ-system and real liquids. In all cases number I correspond to
rigid liquid and II — to non-rigid one. In panel (d) the density from the liquid side is shown for the melting curve

by conditions (2)—(5) are located within quite a narrow
range. We note that these lines are located at temper-
atures that are significantly above the melting line im-
plying that the new dynamic line separates two distinct
liquid states and significantly below the isochore, in con-
trast to the Widom line discussed below in more detail.
Importantly, the lines of all conditions (except condition
(4) which is approximate and valid only at moderate
pressure) lie close to each other in the whole range of
pressures and temperatures. Notably, pressure in this
range varies by almost four orders of magnitude. We
further observe that by only slight variation of the pro-
portionality coefficients in criteria (1)—(3), namely by a
factor of 1.3-1.4, the lines defined by these conditions
practically coincide, which testifies to the commonality
of physical mechanisms underlying the above criteria.
The same is true for the criterium (5): The line defined
by the condition ¢y = 1.9k (note that 1.9 differs from
2 by 5%) coincides with the main line defined by cri-
terium (1).

In addition to model systems, we find good agree-
ment between the theoretical predictions and experimen-
tal data for liquid Ar, Ne, and N» (Fig.2). In particular,

we observe a good match between the region of the dis-
appearance of the positive dispersion of sound velocity in
liquid Ar [13] and N3 [15] and the dynamic line (Fig. 2).
The qualitative change of the temperature dependencies
of viscosity of liquid nitrogen near crossover region is
demonstrated at Fig. 4.

Interestingly, crossover lines correspond to density
increase with increasing temperature: the relation p ~
~ Tk is met, where k =~ 0.25 for liquid N», LJ- and
SSp-systems (Figs.2 and 3). Note that for any system
of particles with uniform potential, there are scaling re-
lations for physical values [22]. In particular, p*/3/T =
= const along the melting line for the SSp-system, giving
p~ T,},/ * for the melting temperature T3, for n = 12.
The similarity of the dependence of p(T') for the melting
and dynamic lines implies similar scaling relations for
the dynamic line. This point will be discussed in de-
tails elsewhere. As a result, the region of the solid-like
“rigid” liquid does not, under any pressures, disappear
(Figs.2 and 3) and the narrow crossover zone continues
for arbitrarily high pressures and temperatures.

We note that the line related to condition (2) was con-
sidered earlier, at least at low pressures [23,24]. This
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Fig.3. (Color online) T—P and T—p phase diagrams of
the simulated soft-sphere systems for n = 12 [(a) and (b)].
This figure presents calculated lines defined by different
criteria including that for the minimum of viscosity n on
isochors. In panel (b) the density from the liquid side is
shown for the melting curve; both temperature and pres-
sure are in standard reduced soft-sphere system units
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Fig.4. (Color online) Experimental [19] isobaric tempera-
ture dependences of viscosity of nitrogen with asymptotes
at low (exponent of inverse temperature) and high (power
law) temperatures. Arrow indicates the corresponding
temperature of condition (1), 7 = 70; « = 0.59 at P = 10P,
and 0.53 at P = 30F.

line corresponds to percolation of “physical clusters”. A
cluster, by definition, is made of particles linked pair-
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wise, where a pair of particles is linked if the sum of
their relative kinetic and interaction energy is less than
ZEro.

It is interesting to note the recent attempts [13,14] to
link the change in the excitation spectrum to the “ther-
modynamic” continuation of the boiling curve, the so-
called Widom line, the line of the maxima of thermo-
dynamic properties in the vicinity of critical point [25].
From a physical point of view, this extrapolated line is
qualitatively different from the dynamic crossover line
proposed here. Indeed, the proposed dynamic line is
not related to the extrapolation of the boiling curve,
and exists in systems where liquid-gas transition and
the correspondent Widom line are absent altogether, in-
cluding SSp-systems and real soft-matter systems (see
[26]). In addition, there are several other important
differences. We recently have calculated compressibil-
ity Br, expansion coefficient ap, heat capacity cp and
density fluctuations ¢ for the LJ-system [27]. The lines
of maxima of all calculated properties rapidly decrease
in magnitude and become smeared at T > (2—2.5)T,
and P > (10—15)P., and therefore can not be meaning-
fully extrapolated to higher pressures and temperatures.
This is in contrast to the proposed dynamic line which
exists for arbitrarily high pressures and temperatures.
Finally, apart from the line of the maxima of the heat
capacity lying close to the critical isochore, the lines of
thermodynamic anomalies correspond to a decrease in
the density with temperature increase, in strong contrast
to the dynamic line.

We propose to call the crossover line defined by
Eq. (1) “Frenkel line”, to honor the contribution of
J.Frenkel to the area of liquid dynamics [1]. On the
basis relaxation time notion Frenkel made a number of
important predictions regarding flow, relaxation as well
as elastic and phonon properties of liquids that subse-
quently formed the microscopic basis of what is now
known as “visco-elastic” picture of liquids [1]. The pro-
posed Frenkel line separates a solid-like liquid where
solid-like shear waves exist and diffusion regime is jump-
like and activated as in a solid, from a gas-like liquid
where no shear modes exist and diffusion is collisional
as in a gas. This line can be mapped in future experi-
ments using several conditions for liquid properties that
we discussed. For molecular and rare-gas liquids the line
is situated at “static pressures” experimental condition,
e.g. for Ne the condition (1) at P ~ 3 GPa should take
place at T ~ (1000—1100) K (approximately 5—6 times
higher than the melting temperature). It is important to
stress that basic conditions above, (1)—(3) and (5) are
not related to liquid-gas transition and to the existence
of critical point from the physical point of view, and
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continue to operate in systems where the critical point

is

G.

absent altogether.
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