Pis’'ma v ZhETF, vol. 95, iss. 6, pp.310—-316

© 2012 March 25

Cylindrical and spherical electron-acoustic Gardner solitons and double

layers in a two-electron-temperature plasma with nonthermal ions

S. T.Shuchy'), A. Mannan, A. A. Mamun
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh

Submitted 19 January 2012

Cylindrical and spherical Gardner solitons (GSs) and double layers (DLs) in a two-electron-temperature
plasma system (containing cold electrons, hot electrons obeying a Boltzmann distribution, and hot ions obey-
ing a nonthermal distribution) are studied by employing the reductive perturbation method. The modified
Gardner (MG) equation describing the nonlinear propagation of the electron-acoustic (EA) waves is derived,
and its nonplanar GS- and DL-solutions are numerically analyzed. The parametric regimes for the existence
of GSs, which are associated with both positive and negative potential, and DLs which are associated with
positive potential, are obtained. The basic features of nonplanar EA GSs, and DLs, which are found to be
different from planar ones, are also identified. The implications of our results in space and laboratory plasmas

are briefly discussed.

1. Introduction. The idea of electron-acoustic
(EA) mode had been conceived by Fried and Gould
[1] during numerical solutions of the linear electrosta-
tic Vlasov dispersion equation in an unmagnetized, ho-
mogenous plasma. It is basically an acoustic-type of
waves [2] in which the inertia is provided by the cold
electron mass, and the restoring force is provided by the
hot electron thermal pressure. The ions play the role
of a neutralizing background only. The spectrum of the
linear EA-waves, unlike that of the well-known Lang-
muir waves, extends only up to the cold electron plasma
frequency wp. = (4mncoe?/me)'/2, where ng is the un-
perturbed cold electron number density, e is magnitude
of the electron charge, and m, is the mass of an elec-
tron. This upper wave frequency limit (w ~ wp.) corre-
sponds to a short-wavelength EA-wave and depends on
the unperturbed cold electron number density n.,0. On
the other hand, the dispersion relation of the linear EA-
waves in the long-wavelength limit (in comparison with
the hot electron Debye radius Agy, = (kpTh/4mnpoe?)'/2,
where T} is the hot electron temperature, kg is the
Boltzmann constant, and npo is the unperturbed hot
electron number density) is w ~ kC., where k is the
wave number and C, = (n.oksTh/nrome)'/? is the EA
speed [3]. Besides the well-known Langmuir and ion-
acoustic waves, they noticed the existence of a heavily
damped acoustic-like solution of the dispersion equa-
tion. It was later shown that in the presence of two
distinct groups (cold and hot) of electrons and immo-
bile ions, one indeed obtains a weakly damped EA-
mode [2], the properties of which significantly differ
from those of the Langmuir waves. Gary and Tokar
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[3] performed a parameter survey and found conditions
for the existence of the EA-waves. The most impor-
tant condition is T, <« T}, where T, (T}) is the tem-
perature of cold (hot) electrons. The propagation char-
acteristics of the EA-waves have also been studied by
Yu and Shukla [4], Mace and Hellberg [5-7] and Mace
et al. [8].

Two-electron-temperature plasmas are known to oc-
cur both in laboratory experiments [9, 10] and in space
environments [11-17]. The propagation of the EA-waves
has received a great deal of renewed interest not only be-
cause the two-electron-temperature plasma is very com-
mon in laboratory experiments and in space, but also
because of the potential importance of the EA-waves in
interpreting electrostatic component of the broadband
electrostatic noise (BEN) observed in the cusp of the
terrestrial magnetosphere [12, 18], in the geomagnetic
tail [19], in auroral region [11, 13, 15], etc.

The EA-mode has been used to explain various wave
emissions in different regions of the Earth’s magne-
tosphere [11, 15]. It was first applied to interpret the
hiss emissions observed in the polar cusp region in asso-
ciation with low-energy (~ 100eV) upward moving elec-
tron beams [20]. The EA-mode was also utilized to in-
terpret the generation of the BEN-emissions detected in
the plasma sheath [19] as well as in the dayside auro-
ral zone [11, 15]. Dubouloz et al. [11] rigorously stud-
ied the BEN observed in the dayside auroral zone and
showed that because of the very high electric field ampli-
tudes (100mV/m) involved, the nonlinear effects must
play a significant role in the generation of the BEN in
the dayside auroral zone. Dubouloz et al. [11, 15] also
explained the short-duration (< 1s) burst of the BEN
in terms of electron acoustic solitary waves (EA-SWs):
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such EA-SWs passing the satellite would generate elec-
tric field spectra. To study the properties of EA soli-
tary structures, Dubouloz et al. [11] considered a one-
dimensional, unmagnetized collisionless plasma consist-
ing of cold electrons, Maxwellian hot electrons, and sta-
tionary ions. El-Shewy [21] has investigated the prop-
agation of linear and nonlinear EA-SWs in a plasma
containing cold electrons, nonthermal hot electrons, and
stationary ions. The effects of arbitrary amplitude EA-
SWs and electron acoustic double layers (EA-DLs) in
a plasma consisting of cold electrons, superthermal hot
electrons, and stationary ions has been considered by
Sahu [22]. The EA-SWs in a two-electron-temperature
plasma where ions form stationary charge neutral back-
ground has been observed by Dutta [23]. El-Wakil et al.
[24] considered cold electrons, nonthermal hot electrons,
and stationary ions, and studied the nonlinear proper-
ties of EA-SWs by using time-fractional Korteweg-de
Vries (K-dV) equation. However, all of these studies [9—
15,17,21-24] are limited to one-dimensional (1D) pla-
nar geometry, which may not be the realistic situation
in space and laboratory devices, since the waves ob-
served in space (laboratory devices) are certainly not
infinite (unbounded) in one-dimension [25]. Thus, there
are some space, where the energetic ions are observed.
The energetic ions are described by a new distribution
called nonthermal distribution [26-28]. The latter is now
being common feature of the Earth’s atmosphere and in
general it is turning out to be a characteristic feature of
space plasmas [29]. To the best of our knowledge no at-
tempt has been made in order to study the effect of non-
thermal (energetic or fast) ions on the electron acoustic
Gardner solitons (EA-GSs) and EA-DLs. Therefore, in
our present work, we consider a plasma system (consist-
ing of cold electrons, hot electrons obeying a Boltzmann
distribution, and hot ions following nonthermal distrib-
ution) and a more general geometry (which is valid for
both planar, cylindrical and spherical geometries), and
theoretically study the basic features of the EA-GSs and
EA-DLs that are found to exist in such a realistic non-
thermal plasma system.

2. Derivation of the MG-equation. We con-
sider a nonplanar (cylindrical or spherical) geometry,
and nonlinear propagation of the EA-waves in a nonpla-
nar, collisionless unmagnetized plasma system consist-
ing of cold electrons, hot electrons obeying a Boltzmann
distribution, and hot ions obeying a nonthermal distri-
bution. Thus, at equilibrium we have n;o = npo + nco,
where n;o is the nonthermal ion number density at equi-
librium. The nonlinear dynamics of the EA-waves prop-
agating in such a nonplanar plasma system is governed
by
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where v = 0 for 1D planar geometry, and v = 1 (2) for
a nonplanar cylindrical (spherical) geometry; n. is the
cold electron number density normalized by its equi-
librium value n.y, u. is the cold electron speed nor-
malized by Cp, ¢ is the wave potential normalized by
kpTh/e, p is the surface charge density normalized by
enpo, b = Npo/nio, 0 = Tp/T;, T; is the ion tempera-
ture, and 8 = 4a/(1 + 3¢) in which « is the nonthermal
parameter [26-28]. The time variable ¢ is normalized by
w,., and the space variable r is normalized by Agp.

To study finite amplitude EA-GSs and EA-DLs by
the reductive perturbation method [30, 31], we first in-

troduce the stretched coordinates:

¢ =e(r —Vpt), (5)
T =€, (6)

where ¢ is a small parameter (0 < ¢ < 1) measuring
the weakness of the dispersion, and V, (normalized by
C.) is the phase speed of the perturbation mode, and
expand all the dependent variables (viz. nc, u., ¢, and
p) in power series of e:

ne=1+ en&l) + e2n£2) + e3n£3) +eey (7)
ue =0+ eu&l) + 62u£2) + e3ug3) + e (8)
¢ =0+edp) + €292 + 363 ... (9)
p=0+epM 4+ 2p? 4 3pB) ... (10)

Now, expressing (1)—(4) in terms of { and 7 by using (5),
(6), and substituting (7)—(10) into the resulting equa-
tions, one can easily develop different sets of equations
in various powers of e. To the lowest order in € one

obtains
mw__ ¥ o__¥ 1
U, ‘/p, n. 1/—?2) ( )
1 —
pM =0, Ve —F (12)
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where ¢ = ¢(!). The expression for V, in (12) represents
the linear dispersion relation for the EA-waves propagat-
ing in a plasma under consideration. To the next higher
order in €, we obtain another set of equations, which,
after using (11), (12), can be simplified as
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It is obvious from (14) that A = 0, since ¥ # 0. The
solution of A = 0 for « is given by
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where 7 = /3(u — 1)(p — 02). We have numerically
shown how «, varies with p and o. The result is dis-
played in Fig. 1 which, in fact, represents the A = 0 sur-

Fig. 1. (Color online) Showing how a. varies with o and p
for Al =ac) =0

face plot, and provides us the parametric regimes (which
correspond to above or below the A = 0 surface plot) of
our present interest. So, for a around its critical value
(), i.e. for |a — a.| = € corresponding to A = Ay, we
can express Ao as

0A
Ap~ s (—) | — a.| = sAye, (16)
oa ) _q.
where
—240(pu + 3acp + 0 — 0c0)
A, = , 17
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and s =1 for a« > a, and s = —1 for a < a.. So, for
a # a., we can express p?) as
(2~ 1 2
p\) ~ EseAazﬁ . (18)

This means that for a # a., p® must be included in
the third order Poisson’s equation. To the next higher
order in €, we obtain the third set of equations:
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where F, = ngl) (2) + n(2)u( ) + u£3). Now, using (11)-

(14) and (19)—(21), we finally obtain a nonlinear dynam-
ical equation of the form:
oy o 20 %
- = 22
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Equation (22) is a modified Gardner (MG) equation.
The modification is due to the extra term, (v/27)%,
which arises due to the effects of the nonplanar geome-
try. We have already mentioned that » = 0 corresponds
to a 1D planar geometry which reduces (22) to a stan-
dard Gardner (SG) equation.

3. Numerical analysis. We have already men-
tioned that v = 0 corresponds to a 1D planar geom-
etry which reduces (22) to a standard Gardner (SG)
equation. Before going to numerical solutions of MG-
equation, we will first analyze stationary GSs-solution
[32] of this SG-equation (22) (with » = 0). To do so,
we first introduce a transformation £ = { — UpT which
allows us to write (22), under the steady state condition,
as

2
3 (%) +vew=o, (25)
where the pseudo-potential V' (v) is
__Uoy2, 54a 5 D 4
VW) = it S et (26)

It is obvious from (26) that

V) o= T =0 27)
2V()
i L:O <0 (28)
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The conditions (27) and (28) imply that the solitary wave
(SW) solution of (25) exist if

V() ly=y¢.. =0. (29)
The latter can be solved as
p q
gl/lml,z + 61/’2ml,2a (30)

Ymiz = ¥m (1F VI+Uo/Vo) (31)

where ¥, = —sA,/qo and Vj
using (26) and (31) in

= AZs%py/6qo.
(25), we have

Now,

'\’
(%) + W= dm)@ =) =0, (@)
where v = go /6. The stationary SW-solution of the SG-
equation (i.e. (22) with » = 0) can be written as

[ /11 €]
w_ |:¢m2 <¢m2 ¢m1> COSh 5:| ’ (33)

where 9,12 is given in (31), and § is the width of the
solitary waves (SWs), and is given by

/ Do
’Y¢m1 Yma2 \/;0 (34)

We note that (33) represents a SW-solution of (22) with
v = 0. It is, therefore, obvious that, to have GSs we
must have Uy < Vp, otherwise ,,1 2 become imaginary.
It is clear from Egs. (14) that the solitary potential
profile is positive (negative) if A > 0 (A < 0). There-
fore, A(a = a.) = 0, where o, is the critical value of
a above (below) which the SWs with a positive (nega-
tive) potential exists, gives the value of a.. To find the
parametric regimes for which the positive and negative
solitary potential profiles exist, we have numerically an-
alyzed A, and obtain A(a = a.) = 0 surface plot. The
A(a = o) = 0 surface plot is shown in Fig.1. We have
the existence of the small amplitude SWs with a negative
potential for a < a, shown in Figs.3 and 5 and with a
positive potential for a > a. shown in Figs. 2 and 4.
The stationary DL-solution of the SG equation (i.e.
(22) with v = 0) is obtained by considering a moving
frame (moving with speed Up) £ = ( — Up7, and im-
posing all the appropriate boundary conditions for DL-
solution, including ¢ — 0, dy/d¢é — 0, d*y/dE* — 0
at £ - —oo. These boundary conditions for the station-
ary DL-solution [33] allow us to express the SG-equation

(i.e., (22) with v = 0) as
Ym £
P = 5 <1 + tanh A) (35)
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5.0

Fig.2. (Color online) Showing the effects of cylindrical
geometry on EA positive GSs for p = 0.5, ¢ = 10,
a = 0.32, and Up = 0.05

Fig.3. (Color online) Showing the effects of cylindrical
geometry on EA negative GSs for p = 0.5, ¢ = 10,
a = 0.30, and Up = 0.05

where the amplitude (¢,,) and the width (A) of the DLs,
and Uy are given by

5.0 30

Fig. 4. (Color online) Showing the effects of spherical geom-
etry on EA positive GSs for 4 = 0.5, ¢ = 10, a = 0.32,
and Up = 0.05
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Fig. 5. (Color online) Showing the effects of spherical geom-
etry on EA negative GSs for 4 = 0.5, ¢ = 10, o = 0.30,
and Up = 0.05

6Uo 24
=S y A = -, Uy =
I/Jm AapO 12nq0 ° 6q0

_ S2Agp0

. (36)

It is clear from (35) and (36) that DLs exist if and only
if go < 0, i.e. a > ap, where ap, is represented by
the go = 0 surface plot, shown in Fig.2. On the other
hand, since pp > 0 and Up > 0, (35) and (36) indicate
that the DLs are associated with positive potential if
s =1, 1ie a > a. and associated with positive poten-
tial if s = —1, i.e. a < a.. It is obvious from Figs.7
and 8 that &« > ap > a, which confirm us that DLs are
associated with positive potential only. The parametric
regimes for the existence of positive DLs are represented
by the upper surface plot of Fig.6, and DLs exist for

Fig.6. (Color online) Showing how ap (obtained from
go(a = ap) = 0) varies with o and p

parameters corresponding to any point above (go = 0)
surface plot.

We now turn to (22) with the term (v/27)%, which is
due to the effects of the nonplanar geometry. An exact
analytic solution of (22) is not possible. Therefore, we

Fig.7. (Color online) Showing the effects of cylindrical
geometry on EA positive DLs for « = 0.35, p = 0.5,
Uy = 0.5, and o = 10

2030

Fig. 8. (Color online) Showing the effects of spherical geom-
etry on EA positive DLs for a = 0.35, p = 0.5, Up = 0.5,
and o = 10

have numerically solved (22), and have studied the ef-
fects of the nonplanar geometry on time-dependent EA-
GSs and EA-DLs. The results are depicted in Figs. 1-8.
The initial condition, that we have used in our numeri-
cal analysis, is in the form of the stationary solution of
(22) without the term (v/27)y. Figs.2 (4) and 3 (5)
show how the effects of a cylindrical (spherical) geome-
try modify the EA-GSs. Figs. 7 (8) shows how the effects
of cylindrical (spherical) geometry modify the EA-DLs
for a = 0.32, p = 0.5, 0 = 10, and Uy = 0.5. The nu-
merical solutions of (22) reveal that for a large value of 7
(e.g., 7 = —30), the spherical and cylindrical geometry
of both SWs and DLs are similar to 1D-structures. This
is because for a large value of 7 the term (v/27), which
is due to the effects of the cylindrical (v = 1) or spheri-
cal (v = 2) geometry, is no longer dominant. However,
as the value of 7 decreases, the term (v/27)y becomes
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dominant, and cylindrical and spherical of both SW- and
DL-structures differ from 1D ones. It is found that as
the value of T decreases, the amplitude of these localized
pulses increases. It is also found that the amplitude of
cylindrical EA-SWs and EA-DLs is larger than those of
1D ones, but smaller than that of the spherical ones.

4. Discussion. We have considered a nonplanar
geometry, and have studied EA-SWs and EA-DLs in
an unmagnetized plasma system consisting of cold elec-
trons, Boltzmann hot electrons, and non thermal ions.
The reductive perturbation method has been employed
in order to derive the MG equation which is valid beyond
the K-dV-limit (corresponding to the vanishing of the
nonlinear coefficient of the K-dV-equation, i.e. a ~ a,
in our present situation). The results which have been
found from the numerical solutions of the MG-equation,
can be summarized as follows.

1. The condition @ > a. (a < a.) allows the ex-
istence of finite amplitude EA-SWs with positive
(negative) potential. We note that a. ~ 0.31 for
o =10and p = 0.5.

2. The GSs (represented by (33) for planar geom-
etry and steady state condition), are found to be
significantly different from the K-dV-solitons (rep-
resented in the form of sech?(£/4§)) which do not
exist for a ~ a..

3. The magnitude of the amplitude of positive and
negative GSs decreases with «, but increases

4. The width of positive and negative GSs increases
with «, but decreases with Up.

5. The DLs are found to be formed when a > a.,ap
where a. and ap depend on p and o, and decrease
with the increase of o, but increase with u as ob-
vious from Figs. 1 and 6. We note that ap = 0.35,
for o = 10 and g = 0.5. The DLs are associated
with positive potential for a > ap.

6. The amplitude of the DLs decreases with the in-
crease of a, but increases with Up.

7. The width of positive DLs decreases with both of
a and Up.

8. The numerical analysis of the MG-equation dic-
tates that for a very large value of 7 the nonpla-
nar EA-GSs, and EA-DLs are identical, but the
magnitude of the amplitude of both cylindrical and
spherical EA-GSs and EA-DLs increases with the
decrease of the value of 7.
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9. The basic features (viz. amplitude, width, speed,
etc.) are significantly modified by the nonthermal
ions.

10. The amplitude of the cylindrical EA-SWs and EA-
DLs is larger than those of 1D ones, but smaller
than that of the spherical ones.

We note that our present theory is valid only for
small but finite amplitude solitary structures, but not
arbitrary amplitude structures. The ranges of different
plasma parameters used in this investigation are very
wide (u = 0.2—0.9, 0 = 5—15, and a = 0.01-0.5), are
relevant to both space [11-15] and laboratory plasmas
[9, 10]. Thus, the results of the present investigation
should help us to explain the basic features of localized
EA perturbations propagating in space and laboratory
plasmas.
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