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 2012 March 25Cylindrical and spherical electron-acoustic Gardner solitons and doublelayers in a two-electron-temperature plasma with nonthermal ionsS.T. Shuchy1), A.Mannan, A.A.MamunDepartment of Physics, Jahangirnagar University, Savar, Dhaka-1342, BangladeshSubmitted 19 January 2012Cylindrical and spherical Gardner solitons (GSs) and double layers (DLs) in a two-electron-temperatureplasma system (containing cold electrons, hot electrons obeying a Boltzmann distribution, and hot ions obey-ing a nonthermal distribution) are studied by employing the reductive perturbation method. The modi�edGardner (MG) equation describing the nonlinear propagation of the electron-acoustic (EA) waves is derived,and its nonplanar GS- and DL-solutions are numerically analyzed. The parametric regimes for the existenceof GSs, which are associated with both positive and negative potential, and DLs which are associated withpositive potential, are obtained. The basic features of nonplanar EA GSs, and DLs, which are found to bedi�erent from planar ones, are also identi�ed. The implications of our results in space and laboratory plasmasare brie
y discussed.1. Introduction. The idea of electron-acoustic(EA) mode had been conceived by Fried and Gould[1] during numerical solutions of the linear electrosta-tic Vlasov dispersion equation in an unmagnetized, ho-mogenous plasma. It is basically an acoustic-type ofwaves [2] in which the inertia is provided by the coldelectron mass, and the restoring force is provided by thehot electron thermal pressure. The ions play the roleof a neutralizing background only. The spectrum of thelinear EA-waves, unlike that of the well-known Lang-muir waves, extends only up to the cold electron plasmafrequency !pc = (4�nc0e2=me)1=2, where nc0 is the un-perturbed cold electron number density, e is magnitudeof the electron charge, and me is the mass of an elec-tron. This upper wave frequency limit (! ' !pc) corre-sponds to a short-wavelength EA-wave and depends onthe unperturbed cold electron number density nc0. Onthe other hand, the dispersion relation of the linear EA-waves in the long-wavelength limit (in comparison withthe hot electron Debye radius �dh = (kBTh=4�nh0e2)1=2,where Th is the hot electron temperature, kB is theBoltzmann constant, and nh0 is the unperturbed hotelectron number density) is ! ' kCe, where k is thewave number and Ce = (nc0kBTh=nh0me)1=2 is the EAspeed [3]. Besides the well-known Langmuir and ion-acoustic waves, they noticed the existence of a heavilydamped acoustic-like solution of the dispersion equa-tion. It was later shown that in the presence of twodistinct groups (cold and hot) of electrons and immo-bile ions, one indeed obtains a weakly damped EA-mode [2], the properties of which signi�cantly di�erfrom those of the Langmuir waves. Gary and Tokar1)e-mail: shuchy�phys@yahoo.com

[3] performed a parameter survey and found conditionsfor the existence of the EA-waves. The most impor-tant condition is Tc � Th, where Tc (Th) is the tem-perature of cold (hot) electrons. The propagation char-acteristics of the EA-waves have also been studied byYu and Shukla [4], Mace and Hellberg [5{7] and Maceet al. [8].Two-electron-temperature plasmas are known to oc-cur both in laboratory experiments [9, 10] and in spaceenvironments [11{17]. The propagation of the EA-waveshas received a great deal of renewed interest not only be-cause the two-electron-temperature plasma is very com-mon in laboratory experiments and in space, but alsobecause of the potential importance of the EA-waves ininterpreting electrostatic component of the broadbandelectrostatic noise (BEN) observed in the cusp of theterrestrial magnetosphere [12, 18], in the geomagnetictail [19], in auroral region [11, 13, 15], etc.The EA-mode has been used to explain various waveemissions in di�erent regions of the Earth's magne-tosphere [11, 15]. It was �rst applied to interpret thehiss emissions observed in the polar cusp region in asso-ciation with low-energy (� 100 eV) upward moving elec-tron beams [20]. The EA-mode was also utilized to in-terpret the generation of the BEN-emissions detected inthe plasma sheath [19] as well as in the dayside auro-ral zone [11, 15]. Dubouloz et al. [11] rigorously stud-ied the BEN observed in the dayside auroral zone andshowed that because of the very high electric �eld ampli-tudes (100mV/m) involved, the nonlinear e�ects mustplay a signi�cant role in the generation of the BEN inthe dayside auroral zone. Dubouloz et al. [11, 15] alsoexplained the short-duration (< 1s) burst of the BENin terms of electron acoustic solitary waves (EA-SWs):310 �¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 5 { 6 2012



Cylindrical and spherical electron-acoustic Gardner solitons : : : 311such EA-SWs passing the satellite would generate elec-tric �eld spectra. To study the properties of EA soli-tary structures, Dubouloz et al. [11] considered a one-dimensional, unmagnetized collisionless plasma consist-ing of cold electrons, Maxwellian hot electrons, and sta-tionary ions. El-Shewy [21] has investigated the prop-agation of linear and nonlinear EA-SWs in a plasmacontaining cold electrons, nonthermal hot electrons, andstationary ions. The e�ects of arbitrary amplitude EA-SWs and electron acoustic double layers (EA-DLs) ina plasma consisting of cold electrons, superthermal hotelectrons, and stationary ions has been considered bySahu [22]. The EA-SWs in a two-electron-temperatureplasma where ions form stationary charge neutral back-ground has been observed by Dutta [23]. El-Wakil et al.[24] considered cold electrons, nonthermal hot electrons,and stationary ions, and studied the nonlinear proper-ties of EA-SWs by using time-fractional Korteweg-deVries (K-dV) equation. However, all of these studies [9{15, 17, 21{24] are limited to one-dimensional (1D) pla-nar geometry, which may not be the realistic situationin space and laboratory devices, since the waves ob-served in space (laboratory devices) are certainly notin�nite (unbounded) in one-dimension [25]. Thus, thereare some space, where the energetic ions are observed.The energetic ions are described by a new distributioncalled nonthermal distribution [26{28]. The latter is nowbeing common feature of the Earth's atmosphere and ingeneral it is turning out to be a characteristic feature ofspace plasmas [29]. To the best of our knowledge no at-tempt has been made in order to study the e�ect of non-thermal (energetic or fast) ions on the electron acousticGardner solitons (EA-GSs) and EA-DLs. Therefore, inour present work, we consider a plasma system (consist-ing of cold electrons, hot electrons obeying a Boltzmanndistribution, and hot ions following nonthermal distrib-ution) and a more general geometry (which is valid forboth planar, cylindrical and spherical geometries), andtheoretically study the basic features of the EA-GSs andEA-DLs that are found to exist in such a realistic non-thermal plasma system.2. Derivation of the MG-equation. We con-sider a nonplanar (cylindrical or spherical) geometry,and nonlinear propagation of the EA-waves in a nonpla-nar, collisionless unmagnetized plasma system consist-ing of cold electrons, hot electrons obeying a Boltzmanndistribution, and hot ions obeying a nonthermal distri-bution. Thus, at equilibrium we have ni0 = nh0 + nc0,where ni0 is the nonthermal ion number density at equi-librium. The nonlinear dynamics of the EA-waves prop-agating in such a nonplanar plasma system is governedby

@nc@t + 1r� @@r (r�ncuc) = 0; (1)@uc@t + uc @uc@r = @�@r ; (2)1r� @@r �r� @�@r� = ��; (3)� = (1 + ���+ ��2�2)e��� � �e� � (1� �)nc; (4)where � = 0 for 1D planar geometry, and � = 1 (2) fora nonplanar cylindrical (spherical) geometry; nc is thecold electron number density normalized by its equi-librium value nc0, uc is the cold electron speed nor-malized by Ce, � is the wave potential normalized bykBTh=e, � is the surface charge density normalized byenh0, � = nh0=ni0, � = Th=Ti, Ti is the ion tempera-ture, and � = 4�=(1+ 3�) in which � is the nonthermalparameter [26{28]. The time variable t is normalized by!�1pc , and the space variable r is normalized by �dh.To study �nite amplitude EA-GSs and EA-DLs bythe reductive perturbation method [30, 31], we �rst in-troduce the stretched coordinates:� = �(r � Vpt); (5)� = �3t; (6)where � is a small parameter (0 < � < 1) measuringthe weakness of the dispersion, and Vp (normalized byCe) is the phase speed of the perturbation mode, andexpand all the dependent variables (viz. nc, uc, �, and�) in power series of �:nc = 1 + �n(1)c + �2n(2)c + �3n(3)c + � � �; (7)uc = 0 + �u(1)c + �2u(2)c + �3u(3)c + � � �; (8)� = 0 + ��(1) + �2�(2) + �3�(3) + � � �; (9)� = 0 + ��(1) + �2�(2) + �3�(3) + � � �: (10)Now, expressing (1){(4) in terms of � and � by using (5),(6), and substituting (7){(10) into the resulting equa-tions, one can easily develop di�erent sets of equationsin various powers of �. To the lowest order in � oneobtains u(1)c = �  Vp ; n(1)c = �  V 2p ; (11)�(1) = 0; V 2p = 1� ��+ �(1� �) ; (12)where  = �(1). The expression for Vp in (12) representsthe linear dispersion relation for the EA-waves propagat-ing in a plasma under consideration. To the next higherorder in �, we obtain another set of equations, which,after using (11), (12), can be simpli�ed as�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 5 { 6 2012



312 S.T. Shuchy, A.Mannan, A.A.Mamunu(2)c =  22V 3p � �(2)Vp ; n(2)c = 3 22V 4p � �(2)V 2p ; (13)�(2) = 12A 2 = 0; A = �2 � �� 3V 4p (1� �): (14)It is obvious from (14) that A = 0, since  6= 0. Thesolution of A = 0 for � is given by� = �c = 6(�2 � �2) + 3�(1 + �)2 � 4��18�2 + 9�(� � 1)2 � 6�2 ; (15)where � = p3(�� 1)(�� �2). We have numericallyshown how �c varies with � and �. The result is dis-played in Fig. 1 which, in fact, represents the A = 0 sur-

Fig. 1. (Color online) Showing how �c varies with � and �for A(� = �c) = 0face plot, and provides us the parametric regimes (whichcorrespond to above or below the A = 0 surface plot) ofour present interest. So, for � around its critical value(�c), i.e. for j� � �cj = � corresponding to A = A0, wecan express A0 asA0 ' s�@A@���=�c j�� �cj = sA��; (16)where A� = �24�(�+ 3�c�+ � � �c�)(1 + 3�c)3(�� 1) ; (17)and s = 1 for � > �c and s = �1 for � < �c. So, for� 6= �c, we can express �(2) as�(2) ' 12s�A� 2: (18)This means that for � 6= �c, �(2) must be included inthe third order Poisson's equation. To the next higherorder in �, we obtain the third set of equations:

@n(1)c@� + �u(1)cVp� � Vp @n(3)c@� + @Fc@� = 0; (19)@u(1)c@� � Vp @u(3)c@� + @@� hu(1)c u(2)c i� @�(3)@� = 0; (20)@2 @�2 +12sA� 2�(�+����)�(3)�(���2) �(2)�� (1� �)n(3)c ���6 + ��32 + �36 � 3 = 0; (21)where Fc = n(1)c u(2)c + n(2)c u(1)c + u(3)c . Now, using (11){(14) and (19){(21), we �nally obtain a nonlinear dynam-ical equation of the form:@ @� + �2�  + p @ @� + q 2 @ @� + p0 @3 @�3 = 0; (22)where p = sA�p0, q = p0q0, andp0 = V 3p2(1� �) ; (23)q0 = 152V 6p (1� �)� 12[�+ (1 + 3�)�3]: (24)Equation (22) is a modi�ed Gardner (MG) equation.The modi�cation is due to the extra term, (�=2�) ,which arises due to the e�ects of the nonplanar geome-try. We have already mentioned that � = 0 correspondsto a 1D planar geometry which reduces (22) to a stan-dard Gardner (SG) equation.3. Numerical analysis. We have already men-tioned that � = 0 corresponds to a 1D planar geom-etry which reduces (22) to a standard Gardner (SG)equation. Before going to numerical solutions of MG-equation, we will �rst analyze stationary GSs-solution[32] of this SG-equation (22) (with � = 0). To do so,we �rst introduce a transformation � = � � U0� whichallows us to write (22), under the steady state condition,as 12 �d d� �2 + V ( ) = 0; (25)where the pseudo-potential V ( ) isV ( ) = � U02p0 2 + sA�6  3 + q012 4: (26)It is obvious from (26) thatV ( ) j =0= dV ( )d ���� =0 = 0; (27)d2V ( )d 2 ���� =0 < 0: (28)�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 5 { 6 2012



Cylindrical and spherical electron-acoustic Gardner solitons : : : 313The conditions (27) and (28) imply that the solitary wave(SW) solution of (25) exist ifV ( )j = m = 0: (29)The latter can be solved asU0 = p3 m1;2 + q6 2m1;2; (30) m1;2 =  m �1�p1 + U0=V0� ; (31)where  m = �sA�=q0 and V0 = A2�s2p0=6q0. Now,using (26) and (31) in (25), we have�d d� �2 + 
 2( �  m1)( �  m2) = 0; (32)where 
 = q0=6. The stationary SW-solution of the SG-equation (i.e. (22) with � = 0) can be written as = � 1 m2 �� 1 m2 � 1 m1� cosh2 ����1 ; (33)where  m1;2 is given in (31), and � is the width of thesolitary waves (SWs), and is given by� =r� 4
 m1 m2 =r p0U0 : (34)We note that (33) represents a SW-solution of (22) with� = 0. It is, therefore, obvious that, to have GSs wemust have U0 < V0, otherwise  m1;2 become imaginary.It is clear from Eqs. (14) that the solitary potentialpro�le is positive (negative) if A > 0 (A < 0). There-fore, A(� = �c) = 0, where �c is the critical value of� above (below) which the SWs with a positive (nega-tive) potential exists, gives the value of �c. To �nd theparametric regimes for which the positive and negativesolitary potential pro�les exist, we have numerically an-alyzed A, and obtain A(� = �c) = 0 surface plot. TheA(� = �c) = 0 surface plot is shown in Fig. 1. We havethe existence of the small amplitude SWs with a negativepotential for � < �c shown in Figs. 3 and 5 and with apositive potential for � > �c shown in Figs. 2 and 4.The stationary DL-solution of the SG equation (i.e.(22) with � = 0) is obtained by considering a movingframe (moving with speed U0) � = � � U0� , and im-posing all the appropriate boundary conditions for DL-solution, including  ! 0, d =d� ! 0, d2 =d�2 ! 0at � ! �1. These boundary conditions for the station-ary DL-solution [33] allow us to express the SG-equation(i.e., (22) with � = 0) as =  m2 �1 + tanh ��� ; (35)

Fig. 2. (Color online) Showing the e�ects of cylindricalgeometry on EA positive GSs for � = 0:5, � = 10,� = 0:32, and U0 = 0:05

Fig. 3. (Color online) Showing the e�ects of cylindricalgeometry on EA negative GSs for � = 0:5, � = 10,� = 0:30, and U0 = 0:05where the amplitude ( m) and the width (�) of the DLs,and U0 are given by

Fig. 4. (Color online) Showing the e�ects of spherical geom-etry on EA positive GSs for � = 0:5, � = 10, � = 0:32,and U0 = 0:05�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 5 { 6 2012
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Fig. 5. (Color online) Showing the e�ects of spherical geom-etry on EA negative GSs for � = 0:5, � = 10, � = 0:30,and U0 = 0:05 m = s 6U0A�p0 ; � =s� 24 2mq0 ; U0 = �s2A2�p06q0 : (36)It is clear from (35) and (36) that DLs exist if and onlyif q0 < 0, i.e. � > �D , where �D, is represented bythe q0 = 0 surface plot, shown in Fig. 2. On the otherhand, since p0 > 0 and U0 > 0, (35) and (36) indicatethat the DLs are associated with positive potential ifs = 1, i.e. � > �c, and associated with positive poten-tial if s = �1, i.e. � < �c. It is obvious from Figs. 7and 8 that � > �D > �c which con�rm us that DLs areassociated with positive potential only. The parametricregimes for the existence of positive DLs are representedby the upper surface plot of Fig. 6, and DLs exist for

Fig. 6. (Color online) Showing how �D (obtained fromq0(� = �D) = 0) varies with � and �parameters corresponding to any point above (q0 = 0)surface plot.We now turn to (22) with the term (�=2�) , which isdue to the e�ects of the nonplanar geometry. An exactanalytic solution of (22) is not possible. Therefore, we

Fig. 7. (Color online) Showing the e�ects of cylindricalgeometry on EA positive DLs for � = 0:35, � = 0:5,U0 = 0:5, and � = 10

Fig. 8. (Color online) Showing the e�ects of spherical geom-etry on EA positive DLs for � = 0:35, � = 0:5, U0 = 0:5,and � = 10have numerically solved (22), and have studied the ef-fects of the nonplanar geometry on time-dependent EA-GSs and EA-DLs. The results are depicted in Figs. 1{8.The initial condition, that we have used in our numeri-cal analysis, is in the form of the stationary solution of(22) without the term (�=2�) . Figs. 2 (4) and 3 (5)show how the e�ects of a cylindrical (spherical) geome-try modify the EA-GSs. Figs. 7 (8) shows how the e�ectsof cylindrical (spherical) geometry modify the EA-DLsfor � = 0:32, � = 0:5, � = 10, and U0 = 0:5. The nu-merical solutions of (22) reveal that for a large value of �(e.g., � = �30), the spherical and cylindrical geometryof both SWs and DLs are similar to 1D-structures. Thisis because for a large value of � the term (�=2�) , whichis due to the e�ects of the cylindrical (� = 1) or spheri-cal (� = 2) geometry, is no longer dominant. However,as the value of � decreases, the term (�=2�) becomes�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 5 { 6 2012



Cylindrical and spherical electron-acoustic Gardner solitons : : : 315dominant, and cylindrical and spherical of both SW- andDL-structures di�er from 1D ones. It is found that asthe value of � decreases, the amplitude of these localizedpulses increases. It is also found that the amplitude ofcylindrical EA-SWs and EA-DLs is larger than those of1D ones, but smaller than that of the spherical ones.4. Discussion. We have considered a nonplanargeometry, and have studied EA-SWs and EA-DLs inan unmagnetized plasma system consisting of cold elec-trons, Boltzmann hot electrons, and non thermal ions.The reductive perturbation method has been employedin order to derive the MG equation which is valid beyondthe K-dV-limit (corresponding to the vanishing of thenonlinear coe�cient of the K-dV-equation, i.e. � � �cin our present situation). The results which have beenfound from the numerical solutions of the MG-equation,can be summarized as follows.1. The condition � > �c (� < �c) allows the ex-istence of �nite amplitude EA-SWs with positive(negative) potential. We note that �c � 0:31 for� = 10 and � = 0:5.2. The GSs (represented by (33) for planar geom-etry and steady state condition), are found to besigni�cantly di�erent from the K-dV-solitons (rep-resented in the form of sech2(�=�)) which do notexist for � � �c.3. The magnitude of the amplitude of positive andnegative GSs decreases with �, but increaseswith U0.4. The width of positive and negative GSs increaseswith �, but decreases with U0.5. The DLs are found to be formed when � > �c; �Dwhere �c and �D depend on � and �, and decreasewith the increase of �, but increase with � as ob-vious from Figs. 1 and 6. We note that �D = 0:35,for � = 10 and � = 0:5. The DLs are associatedwith positive potential for � > �D.6. The amplitude of the DLs decreases with the in-crease of �, but increases with U0.7. The width of positive DLs decreases with both of� and U0.8. The numerical analysis of the MG-equation dic-tates that for a very large value of � the nonpla-nar EA-GSs, and EA-DLs are identical, but themagnitude of the amplitude of both cylindrical andspherical EA-GSs and EA-DLs increases with thedecrease of the value of � .

9. The basic features (viz. amplitude, width, speed,etc.) are signi�cantly modi�ed by the nonthermalions.10. The amplitude of the cylindrical EA-SWs and EA-DLs is larger than those of 1D ones, but smallerthan that of the spherical ones.We note that our present theory is valid only forsmall but �nite amplitude solitary structures, but notarbitrary amplitude structures. The ranges of di�erentplasma parameters used in this investigation are verywide (� = 0:2�0:9, � = 5�15, and � = 0:01�0:5), arerelevant to both space [11{15] and laboratory plasmas[9, 10]. Thus, the results of the present investigationshould help us to explain the basic features of localizedEA perturbations propagating in space and laboratoryplasmas.The research grant for research equipment from theThird World Academy of Sciences (Trieste, Italy) isgratefully acknowledged. The authors are grateful Prof.P.K. Shukla for his invaluable suggestions during thecourse of this work.1. B.D. Fried and R.W. Gould, Phys. Fluids 4, 139 (1961).2. K. Watanabe and T. Taniuti, J. Phys. Soc. Jpn. 43, 1819(1977).3. S. P. Gary and R. L. Tokar, Phys. Fluids 28, 2439(1985).4. M.Yu and P.K. Shukla, J. Plasma Phys. 29, 409 (1983).5. R. L. Mace and M.A. Hellberg, J. Plasma Phys. 43, 239(1990).6. R. L. Mace and M.A. Hellberg, J. Geophys. Res. 98,5881 (1993).7. R. L. Mace and M.A. Hellberg, Phys. Plasmas 8, 2649(2001).8. R. L. Mace, S. Baboolal, R. Bharuthram, and M. A.Hellberg, J. Plasma Phys. 45, 323 (1991).9. H. Der
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