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 2012 May 10Schwinger pair creation in multilayer grapheneM.A. Zubkov1)Alikhanov Institute for Teoretical and Experimental Physics, 117259 Moscow, RussiaSubmitted 5 April 2012The low energy e�ective �eld model for the multilayer graphene (at ABC stacking) in external Electric�eld is considered. The Schwinger pair creation rate and the vacuum persistence probability are calculatedusing the semiclassical approach.1. Introduction. The Schwinger mechanism ofelectron-positron pair creation in electric �eld was �rstinvestigated in [1]. The rate of pair production dependson electric �eld and is so small that is not observable forthe experimentally allowed values of the electric �eld.In the condensed matter systems the situation may bedi�erent. For example, in graphene [2, 3] the large valueof the e�ective coupling constant opens the possibilityfor the pair creation process to be observed [4, 5]. Ingraphene monolayer the pair creation rate may be cal-culated using the approach of [1]. However, a di�erentapproaches were also used (see, for example, [4, 6] andreferences therein). The approach described in [6] wasalso applied to the bilayer graphene [7, 8].In the present paper we calculate the pair produc-tion rate in multilayer graphene. We consider the sim-plest case of ABC-stacking described by the two-bandpseudospin Hamiltonian with the chirality index J equalto the number of layers [9]. In our calculations we relyon the method developed in [4, 10] and in [11]. A simi-lar approach was also applied to He-3 [12]. Within thisapproach, which was originally applied to monolayergraphene, we develop the semiclassical approximation(for the alternative ways to apply semiclassical techniqueto the fermionic models see [13, 14]). This approxima-tion gives results identical to the results obtained viathe exact solution of the Schrodinger equation for thecase of monolayer. Our results obtained in the mul-tilayer graphene are checked with the more traditionalsemiclassical approach described in [6{8].The paper is organized as follows. In Section 2 wedescribe the one-particle Schrodinger equation that ap-pears in the given problem. In Section 3 we introduceappropriate boundary conditions. In Section 4 the semi-classical approximation for the one-particle Schrodingerequation is introduced. In Section 5 we check the resultsobtained in Section 4 via the semiclassical approach de-scribed in [6{8]. In Section 6 we compare our resultswith the exact ones for the case of graphene monolayer.1)e-mail: zubkov@itep.ru

In Section 7 we calculate the vacuum persistence proba-bility and the pair production rate for the �eld { theoreticmodel of multilayer graphene. In Section 8 we end withthe conclusions.2. One-particle Schrodinger equation. First, letus consider the one-particle problem. We deal with thetwo-component spinors placed in the external Electric�eld directed along the x-axis. We consider the externalElectro-magnetic potential in the form: Ax = Et. Theone-particle Hamiltonian in a subsequent parametriza-tion has the form [9, 8]H = v0B@ 0 h(p̂x +Et)� ip̂yiJh(p̂x +Et) + ip̂yiJ 0 1CA :(1)Here v is a constant that is equal to Fermi velocityfor the case of monolayer, J is the number of layers.Schrodinger equation has the usual formi@t	 = H	: (2)Its solution is	(t) = P exp h�i Z tt0 H(t)dti	(t0) = Û(t)	(t0): (3)Here the path-ordered exponent is used. Operator Û(t)is unitary by construction. Later on we imply periodicboundary conditions in space-coordinates. That's why	 can be decomposed into the sum over the quantized2-momenta: 	(t; x) =Ppx;py eipxx+ipyy p(t). For  (t)we have: p(t) = P exp��iv Z tt0 H [p; t]dt� p(t0); (4)H [p; t] = 0B@ 0 h(px +Et)� ipyiJh(px +Et) + ipyiJ 0 1CA :3. Boundary conditions. In our semiclassical con-sideration we imply that J is odd. However, analytical540 �¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 9 { 10 2012



Schwinger pair creation in multilayer graphene 541continuation will allow us to obtain �nal results for evenvalues of J as well. It is implied that at t < t0 Electric�eld is absent and we have p(t) = R[p; t]+e�ivjP jJ�3tR[p; t] p(t0); (5)R[p; t] = 1p2 0B@ 1 �P �=jP j�J��P=jP j�J 1 1CA ;where P = px + Et0 + ipy. Boundary conditions at t0must correspond to the negative energy levels occupied:0 =  1 + �P �=jP j�J 2;1 = 1p2[ 2 � �P=jP j�J 1]: (6)It is supposed that at t > t0 + T Electric �eld isswitched o� again. Then at t = t0 + T we have�+ = 1p2[ 1 + �P �=jP j�J 2];�� = 1p2[ 2 � �P=jP j�J 1]; (7)the value j�+j2 is the probability that the electron-holepair has been created, while j��j2 is the probability thatthe negative energy level remains occupied.For the semiclassical consideration it is useful to con-sider t0 = �T=2 ! �1. The essence of semiclassicalmethodology is the consideration of large frequenciesthat are in this case px + Et. That's why we requireat t = t0 = �T=20 =  1 �  2;1 = 1p2( 2 +  1): (8)At t = +T=2 we denote�+ = 1p2( 1 +  2);�� = 1p2( 2 �  1); (9)where again the value j�+j2 is the probability that theelectron-hole pair has been created. This considerationimplies �ET=2 + px < 0 and ET=2 + px > 0.For ET=2 < px (px < �ET=2) boundary conditionsat t = t0 = �T=2 are:0 =  1 �  2;1 = 1p2( 2 �  1): (10)

Here the upper sign is for ET=2 < px while the lowerone is for �ET=2 > px. At t = +T=2 we expect�+ = 1p2( 1 �  2);�� = 1p2( 2 �  1); (11)where again the value j�+j2 is the probability that theelectron-hole pair has been created.4. Semiclassical consideration. Let us now in-troduce the notations:� = � vE �1=(J+1)(px +Et); � = � vE�1=(J+1)py;� = (� + i�)J : (12)Then p(t) = P exp h�i Z  0 ��� 0 ! d�i p(t0): (13)The corresponding system of equations at t > t0 is:i 01 = �� 2;i 02 = � 1: (14)For  1;2 we have: 2 = i 01=uJ ; u = � � i�;� 1uJ @u�2  1 +�1 + 2i�u � 1 = 0: (15)We introduce new variable z = uJ+1=(J + 1). Theresulting equation is[@z]2 1 + �1 + 2i�(J + 1)1=(J+1)z1=(J+1) �J  1 = 0: (16)We represent  1 = eis and obtain the equation for sthat is considered iteratively. In the �rst approximationwe neglect the derivatives of s higher than the �rst deriv-ative. In order to calculate the second approximation wesubstitute the �rst approximation to the expression fors00 etc. When only the �rst and the second terms arekept, the wave functions are given by 1 = c1�� � i�� + i��J=4 exp ��i Z ��0 (�2 +�2)J=2d��++c2�� � i�� + i��J=4 exp �i Z ��0 (�2 +�2)J=2d�� ; 2 = c1�� + i�� � i��J=4 exp ��i Z ��0 (�2 +�2)J=2d����c2�� + i�� � i��J=4 exp �i Z ��0 (�2 +�2)J=2d�� : (17)�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 9 { 10 2012



542 M.A. ZubkovThe considered approximation is valid if the secondapproximation is smaller than the �rst one. This leadsto the condition���� J�(�2 +�2)J=2+1 ���� = py(E=v)J=[2(J+1)]h(px +Et)2 + p2yi(J+2)=2 � 1:(18)Next, we use the fact that the given semiclassicalapproximation gives the solution of Eq. (15) not onlyfor large real values of � but for the complex values of� with large j� j. That's why analytical continuation ofthe solution at � ! �1 gives the solution at � ! +1.(The continuation is performed along the line placed atj� j ! 1.)At ET=2 > px > �ET=2 boundary conditions givec2 = 0. The probability that the pair is created is j�+j2,where �+ = exp��i Z ��0 (�2 +�2)J=2d�� == exp � j�jJ+12 Z (1� z)J=2z�1=2dz� == exp ��j�jJ+1B(J=2 + 1; 1=2)� ; z = �(�=�)2: (19)Here we consider the contour placed at in�nity with theorientation such that j�+j remains less than unity.We havej�+j2 = exp����jpyj=E1=(J+1)�J+1� ;� = 2�v J !!(J + 1)!! = 2vB�J2 + 1; 12� == 2vJB�32 ; J2� : (20)Written in this form our result can be continued an-alytically to even values of J . At the same time knownresults for J = 1; 2 are reproduced [4, 8].At ET=2 < px (px < �ET=2) boundary conditionsgive c1 = 0 (c2 = 0). In both cases semicassical approx-imation gives j��j = 1 that means that the electron-holepair is not created.Below we check the obtained above value of the prob-ability that the electron-hole pair is created with thegiven values of momenta (px; py). We do this in twoways: via the application of the semiclassical approxi-mation in its more classical form and via the consider-ation of the exact solution of the Schrodinger equation(at J = 1).5. More classical semiclassics. The problem ofpair creation can be considered in the gauge A0 = Ex.

Then we have stationary Schrodinger equationH	 = �	withH = 0B@ Ex v�p̂x � ip̂y�Jv�p̂x + ip̂y�J Ex 1CA : (21)We proceed with the rescaling z = (E=v)1=(J+1)x, and! = (1=vEJ)1=(J+1)�. Then(z � !) 1 + (�i@z � i�)J 2 = 0;(z � !) 2 + (�i@z + i�)J 1 = 0: (22)The �rst order semiclassical approximation for  1;2gives = exp��i Z [��2 + (z � !)2=J ]1=2dz� : (23)Integration over the classically forbidden region ��2 ++ (z � !)2=J < 0 gives the pair production probability:j�j2 = exp���hpy=E1=(J+1)iJ+1� ;� = 2vJB�32 ; J2 �: (24)This expression coincides with the one derived above.6. Exact solution at J = 1. Let us introduce no-tations  + =  1 �  2 and  � =  1 �  2. Then � = 1� 0+ + i �� +; 00+ + (i+�2 + �2) + = 0: (25)We change variables � = 1p2ei�=4z. Then � = p2e�i�=4� (@z � z=2) +; 00+ + [1=2 + (i�2=2� 1)� z2=4] + = 0: (26)The solution is + =b1D�i�2=2(p2e�3i�=4�)+b2Di�2=2�1(p2e3�i=4�); � = p2e�i�=4� [�b1�2=2D�i�2=2�1(p2e�3i�=4�) ++ b2Di�2=2(p2e3i�=4�)]: (27)The consideration of usual boundary conditions leadsto rather complicated algebra. So we come to the semi-classical boundary conditions (�0 ! +1):p2 =b1D�i�2=2(p2ei�=4�0)+b2Di�2=2�1(p2e�i�=4�0);0 = �b1�2=2D�i�2=2�1(p2ei�=4�0) ++ b2Di�2=2(p2e�i�=4�0): (28)�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 9 { 10 2012



Schwinger pair creation in multilayer graphene 543Using asymptotic expansion for Weber function wecome to b2 = 0 andj�+j2 = e���2 = e��(vF =E)p2y (29)is the probability that the electron-hole pair is created.7. Field-theoretical consideration. The fact thatthe particles do not interact with each other allows toreduce the �eld-theoretical problem to the quantum me-chanical one. Namely, we arrive at the following pattern.Modes for di�erent values of momenta propagate inde-pendently. At t � t0 all states with negative values ofenergy are occupied while all states with positive valuesof energy are vacant. Their evolution in time is governedby the one-particle Schrodinger equation. At t = t0 + Tthe wave function already has the nonzero componentcorresponding to positive energy. Its squared absolutevalue is the probability that the electron-hole pair is cre-ated.Let us calculate the probability that vacuum remainsvacuum Pv (vacuum persistence probability). Accord-ing to the above presented calculation this probabilityisPv =�px;py�1� expf��[jpyj=E1=(J+1)]J+1g�gsgv== e�2ImS : (30)Here S is the e�ective action, the factors gs = 2 andgv = 2 are spin and valley degeneracies. The product isover the momenta that satisfyET=2 > px > �ET=2: (31)We have (L is the linear size of the graphene sheet):! = 2 ImSTL2 = �gsgv E2�L �� Xpy= 2�L K logn1� exp[��(jpyj=E1=2)J+1]o �� �gsgv E2� �� Z dpy2� logn1� exp[��(jpyj=E1=(J+1))J+1]o == gsgv E2�Xn 1n �� Z dpy2� expf��n[jpyj=E1=(J+1)]J+1g == gsgv E(J+2)=(J+1)2(J + 1)�2(�)1=(J+1) �� ��J + 2J + 1��� 1J + 1�: (32)Here � is given by Eq. (20). According to [10] adi�erent quantity is considered as the pair productionrate:

� = hj�+j2i=(L2T ) == gsgv E2�L Xpy= 2�L K exp[��(jpyj=E1=2)J+1] == gsgv E(J+2)=(J+1)2(J + 1)�2(�)1=(J+1)�� 1J + 1�: (33)The form of the functional dependence of � on Ecoincides with that of mentioned in [8].8. Conclusions. In the present paper we calcu-late the pair production rate and the vacuum persistenceprobability for the multilayer graphene. We develop thesemiclassical technique within the approach used ear-lier in monolayer graphene. Our method reproducesknown results for monolayer and bilayer graphene. Fol-lowing [10] we consider the single pair creation rate �and ! = �logPv=TL2 (where Pv is the vacuum persis-tence probability) as di�erent quantities. The possibil-ity to consider ! as a production rate of multiple statesremains open and requires an additional investigation.The author kindly acknowledges discussions withG.E.Volovik. This work was partly supported by RFBRgrant #11-02-01227, by Grant for Leading Scienti�cSchools # 6260.2010.2, by the Federal Special-PurposeProgramme \Cadres" of the Russian Ministry of Scienceand Education, by Federal Special-Purpose Programme#07.514.12.4028.1. J. Schwinger, Phys. Rev. 82, 664 (1951).2. K. S. Novoselov, A.K. Geim, S.V. Morozov et al., Na-ture 438, 197 (2005).3. I. V. Fialkovsky and D.V. Vassilevich, arXiv:1111.3017.4. D. Allor, T.D. Cohen, and D.A. McGady, Phys. Rev.D 78, 096009 (2008); arXiv:0708.1471.5. M. Lewkowicz and B. Rosenstein, arXiv:0901.1476.6. T. Tudorovskiy, K. J. A. Reijnders, and M. I. Katsnelson,Phys. Scr. T 146, 014010 (2012); arXiv:1106.3042.7. N.M. Vildanov, J. Phys.: Condens. Matter 21, 445802(2009).8. M. I. Katsnelson and G. E. Volovik, arXiv:1203.1578.9. H. Min and A.H. MacDonald, PRB 77, 155416(2008); arXiv:0711.4333 [proceedings of YKIS2007,Prog. Theor. Phys. Suppl. 176, 227 (2008);arXiv:0806.2792]; H. Min, E.H. Hwang, and S.Das Sarma, arXiv:1202.2132.10. T.D. Cohen and D.A. McGady, Phys. Rev. D 78,036008 (2008); arXiv:0807.1117.11. S. P. Gavrilov and G.M. Gitman, Phys. Rev. D 53, 7162(1996).12. N. Schopohl and G. E. Volovik, Annals of Phys. 215,372 (1992).13. R. Rajaraman, Phys. Rept. 21, 227 (1975).14. R.F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev.12(8), 2443 (1975).�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 9 { 10 2012


