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Schwinger pair creation in multilayer graphene
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The low energy effective field model for the multilayer graphene (at ABC stacking) in external Electric
field is considered. The Schwinger pair creation rate and the vacuum persistence probability are calculated

using the semiclassical approach.

1. Introduction. The Schwinger mechanism of
electron-positron pair creation in electric field was first
investigated in [1]. The rate of pair production depends
on electric field and is so small that is not observable for
the experimentally allowed values of the electric field.
In the condensed matter systems the situation may be
different. For example, in graphene [2, 3] the large value
of the effective coupling constant opens the possibility
for the pair creation process to be observed [4, 5]. In
graphene monolayer the pair creation rate may be cal-
culated using the approach of [1]. However, a different
approaches were also used (see, for example, [4, 6] and
references therein). The approach described in [6] was
also applied to the bilayer graphene [7, §].

In the present paper we calculate the pair produc-
tion rate in multilayer graphene. We consider the sim-
plest case of ABC-stacking described by the two-band
pseudospin Hamiltonian with the chirality index J equal
to the number of layers [9]. In our calculations we rely
on the method developed in [4, 10] and in [11]. A simi-
lar approach was also applied to He-3 [12]. Within this
approach, which was originally applied to monolayer
graphene, we develop the semiclassical approximation
(for the alternative ways to apply semiclassical technique
to the fermionic models see [13, 14]). This approxima-
tion gives results identical to the results obtained via
the exact solution of the Schrodinger equation for the
case of monolayer. Our results obtained in the mul-
tilayer graphene are checked with the more traditional
semiclassical approach described in [6-8].

The paper is organized as follows. In Section 2 we
describe the one-particle Schrodinger equation that ap-
pears in the given problem. In Section 3 we introduce
appropriate boundary conditions. In Section 4 the semi-
classical approximation for the one-particle Schrodinger
equation is introduced. In Section 5 we check the results
obtained in Section 4 via the semiclassical approach de-
scribed in [6-8]. In Section 6 we compare our results
with the exact ones for the case of graphene monolayer.
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In Section 7 we calculate the vacuum persistence proba-
bility and the pair production rate for the field — theoretic
model of multilayer graphene. In Section 8 we end with
the conclusions.

2. One-particle Schrodinger equation. First, let
us consider the one-particle problem. We deal with the
two-component spinors placed in the external Electric
field directed along the z-axis. We consider the external
Electro-magnetic potential in the form: A, = FEt. The
one-particle Hamiltonian in a subsequent parametriza-
tion has the form [9, 8]

0 [(i)z + Et) — if)y] !

H =0 J
(b + Et) + z‘i)y] 0

1)

Here v is a constant that is equal to Fermi velocity
for the case of monolayer, J is the number of layers.
Schrodinger equation has the usual form

i0,9 = HU. (2)

Its solution is

T(t) = Pexp [—i H(t)dt]\Il(to):ﬁ(t)\Il(to). (3)

to

Here the path-ordered exponent is used. Operator U (t)
is unitary by construction. Later on we imply periodic
boundary conditions in space-coordinates. That’s why
¥ can be decomposed into the sum over the quantized
2-momenta: ¥(t,z) =3, eP=2Ty¥q) (t). For 9(t)

we have:
Yp(t) = Pexp (—iv tt Hlp, t]dt) Yp(to), (4)
’ J
p— 0 (2 + Bt) — in,
, [(pz + Et) + ipy] ’ 0

3. Boundary conditions. In our semiclassical con-
sideration we imply that J is odd. However, analytical
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continuation will allow us to obtain final results for even
values of J as well. It is implied that at ¢ < ¢o Electric
field is absent and we have

p(t) = Rlp, t|"e "IV o5t Rlp, t]y, (to), (5)

| 1 (pp))

Rp,t] = ﬁ —(P/|P|)J . >

where P = p, + FEty + ipy. Boundary conditions at ¢
must correspond to the negative energy levels occupied:

0 =1 + (P/IP))

= Z5tba— (P/IPI) ) (6)

It is supposed that at ¢ > to + T Electric field is
switched off again. Then at t = to + T we have

1

7= el + (PP

1 = slbe = (P/IPI) ], (7

the value |n |2 is the probability that the electron-hole
pair has been created, while |n_|? is the probability that
the negative energy level remains occupied.

For the semiclassical consideration it is useful to con-
sider tgo = —T/2 — —oo. The essence of semiclassical
methodology is the consideration of large frequencies
that are in this case p, + Et. That’s why we require
at t = to = —T/2

0:#}1 _77[}2’

1= (W ). ®)
At t = +T/2 we denote

Ny = %(@bl +v2),

1= 5 =), 9)

where again the value |n.|? is the probability that the
electron-hole pair has been created. This consideration
implies —ET/2 + p, <0 and ET/2 + p, > 0.

For ET/2 < p, (p. < —ET/2) boundary conditions
at t =tg = —T/2 are:

0 =11 £,
1= %wz ). (10)
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Here the upper sign is for ET/2 < p, while the lower
one is for —ET/2 > p,. At t = +T/2 we expect

1
Ny = E(d’l + 12),
1
n- = ﬁ(% ?d’l), (11)

where again the value |n.|? is the probability that the
electron-hole pair has been created.

4. Semiclassical consideration. Let us now in-
troduce the notations:

()", = (),

E E
0 = (1 +3II)”. (12)
Then
. 0 O
wylt) = Pexp i [ ( o ) driplto).  (13)
The corresponding system of equations at ¢ > tq is:
iy = O"y,
iy = OY. (14)
For 1)1 » we have:
Yo = ip) Ju?, w=T1—ill,
1.\ 211
~8.) v+ (1425 ) g =o0. (15)
u’ u

We introduce new variable z = u/*1/(J + 1). The
resulting equation is

) 2411 T
01+ [1 T Uryverye | Y1 =0 (16)

We represent ¢; = e*® and obtain the equation for s
that is considered iteratively. In the first approximation
we neglect the derivatives of s higher than the first deriv-
ative. In order to calculate the second approximation we
substitute the first approximation to the expression for
s" etc. When only the first and the second terms are

kept, the wave functions are given by

T — I\ J/4 T 1
— i H2 J/2d
Wy cl(r+iH) exp[ Z/TO (% +1I7) T_ +

T — Il J/4 . 4 2 2\J/2 |
+62(T+i1'[) exp [z/TO(T +1I°) d*r_,

i1\ 7/4 r '
Py = cl(T +:’H) exp [—z/ (r? +H2)J/2d7' —
P

To

T+ZH J/4 . T 2 2 J/2 1
_02(T_m) exp [z/m (7 + 1) dr | (17)
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The considered approximation is valid if the second
approximation is smaller than the first one. This leads
to the condition

JII
(12 + [12)7/2+1

E/v)//2(J+1)]
— py( /U) < 1.

(T+2)/2
[(pw + Et)? + pi]

(18)

Next, we use the fact that the given semiclassical
approximation gives the solution of Eq. (15) not only
for large real values of 7 but for the complex values of
7 with large |7|. That’s why analytical continuation of
the solution at 7 — —oo gives the solution at 7 — +o00.
(The continuation is performed along the line placed at
|7| = 00.)

At ET/2 > p, > —ET/2 boundary conditions give
c2 = 0. The probability that the pair is created is |n |2,
where

74 = exp [—z/ (% + HZ)J/sz] =

0

_ |7+ NIz 12|
=exp | —5— (1 —2)/ 27" 4dz| =

=exp [-|0|7T'B(J/2+1,1/2)], 2z = —(r/I)%.(19)
Here we consider the contour placed at infinity with the
orientation such that |ny| remains less than unity.

We have

J+1
4 [* = exp [—a(lpyl/E”““’) ] ,

" 1
J : :21)B<£+1,—> =

= 2m0—
T 2 "2

= 20JB (g %) . (20)

Written in this form our result can be continued an-
alytically to even values of J. At the same time known
results for J = 1,2 are reproduced [4, 8].

At ET/2 < p, (p, < —ET/2) boundary conditions
give ¢; = 0 (c2 = 0). In both cases semicassical approx-
imation gives |7—| = 1 that means that the electron-hole
pair is not created.

Below we check the obtained above value of the prob-
ability that the electron-hole pair is created with the
given values of momenta (p;,py). We do this in two
ways: via the application of the semiclassical approxi-
mation in its more classical form and via the consider-
ation of the exact solution of the Schrodinger equation
(at J =1).

5. More classical semiclassics. The problem of
pair creation can be considered in the gauge 49 = Ex.

Then we have stationary Schrodinger equation H¥ = e¥
with

J
Ex v(ﬁz — zf)y)

1= v(f)z + if)y)J Ezx

(21)

We proceed with the rescaling z = (E/v)Y/(/+1z, and
w = (1/vE?)Y/+Ve. Then

(z = w)yr + (—id, —ill) "y =0,

(z — w)hs + (—i8, + )74, = 0. (22)

The first order semiclassical approximation for ; 2
gives

" :exp{ii/[—l'[2+(z—w)2/‘]]1/2dz}. (23)

Integration over the classically forbidden region —II? +
+(z— w)z/‘] < 0 gives the pair production probability:

In|? = exp {—a[py/El/(J+1)]J+1} ,
3 J)‘

a= 2UJB(§, . (24)

This expression coincides with the one derived above.
6. Exact solution at J = 1. Let us introduce no-

tations ¥4 = ¢ — 92 and Y_ = 1p; — 2. Then

1 T
Y = ﬁiﬁﬁr +lﬁ¢+,
Y4+ (i + 24+ 7)Y, =0. (25)

We change variables 7 = %e"”/‘*z. Then

\/iefiw/él

Yo = T(az = z/2)y,

Y+ [1/2+ (iI12/2 — 1) — 22 /4]y = 0. (26)

The solution is

Yy =b1D iz 5 (V2e ¥ /A1) 4by Dippa sy 1 (V263 47),

2e—im/4 .
d)_ = \/_eT[_b1H2/2D,iH2/2,1(\/56_3”‘-/47') +

+ by Dypy2 5 (V2€*7/47)]. (27)
The consideration of usual boundary conditions leads

to rather complicated algebra. So we come to the semi-
classical boundary conditions (79 — +00):

V2 :le—iH2/2(\/iein/47'0)+b2DiH2/271(\/ie_iw/47'0)a
0= —b1H2/2D,iH2/2,1(\/ieiﬂ-/[lﬂ)) +
+ sziHZ/z(\/ie_iﬂ—/[lTo). (28)
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Using asymptotic expansion for Weber function we
come to bs = 0 and

|,r’+|2 — e—7r1'[2 _ e—w(vF/E)p§ (29)
is the probability that the electron-hole pair is created.

7. Field-theoretical consideration. The fact that
the particles do not interact with each other allows to
reduce the field-theoretical problem to the quantum me-
chanical one. Namely, we arrive at the following pattern.
Modes for different values of momenta propagate inde-
pendently. At t < ¢ty all states with negative values of
energy are occupied while all states with positive values
of energy are vacant. Their evolution in time is governed
by the one-particle Schrodinger equation. At ¢t = tg + T
the wave function already has the nonzero component
corresponding to positive energy. Its squared absolute
value is the probability that the electron-hole pair is cre-
ated.

Let us calculate the probability that vacuum remains
vacuum P, (vacuum persistence probability). Accord-
ing to the above presented calculation this probability
is

9s9v
P, =T, p, (1 - exp{—allp,|/EYU+I]+1}) 7" =
= ¢ ?Im3, (30)

Here S is the effective action, the factors g = 2 and
gy = 2 are spin and valley degeneracies. The product is
over the momenta that satisfy

ET/2 > p, > —ET/2. (31)
We have (L is the linear size of the graphene sheet):
w =GP = —g,9, 50 ¥
< Y tog {1 - expl-allp,l/EV2)’ )} ~
pyzzTﬂK
~ _gsgv% X
dpy 1/(J+1)yJ+171 _
x [ P 10g {1~ expl-allp,|/ BV} =
E 1
= gsgv% ; n X
dp
x [P exp{-anllp, /B =
EWJ+2)/(J+1)
= 9s9v 2(J + 1)72(a)/U+1) X
J+2 1
— )I'=—). 2
XC(J+1) (J+1) (32)

Here a is given by Eq. (20). According to [10] a
different quantity is considered as the pair production
rate:
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I = (ns [2)/(L*T) =
B S eplealiny /B =

E(J+2)/(J+1) ( 1 ) . (33)

= 9s9v 2(J + 1)a2()/U+1) " \J + 1

The form of the functional dependence of I on E
coincides with that of mentioned in [8].

8. Conclusions. In the present paper we calcu-
late the pair production rate and the vacuum persistence
probability for the multilayer graphene. We develop the
semiclassical technique within the approach used ear-
lier in monolayer graphene. Our method reproduces
known results for monolayer and bilayer graphene. Fol-
lowing [10] we consider the single pair creation rate I'
and w = —logP,/TL? (where P, is the vacuum persis-
tence probability) as different quantities. The possibil-
ity to consider w as a production rate of multiple states
remains open and requires an additional investigation.
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