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 2012 June 10Polarization �eld in a single-valley strongly-interacting 2D electronsystemV.T.Dolgopolov, A. A. ShashkinInstitute of Solid State Physics, 142432 Chernogolovka, RussiaSubmitted 23 April 2012The magnetic �eld of complete spin polarization is calculated in a disorderless single-valley strongly-interacting 2D electron system. In the metallic region above the Wigner{Mott transition, non-equilibrium spinstates are predicted, which should give rise to hysteresis in the magnetization.A transition from the high conductivities � � e2=hto the low conductivities � � e2=h that is observed withdecreasing electron density in disordered 2D electronsystems was �rst interpreted as the Anderson metal-insulator transition [1]. The interpretation changed afterthe appearance of the weak localization theory [2] andscaling hypothesis [3]. According to the latter, there isno metallic state in disordered in�nite 2D electron sys-tems at zero temperature. As a result, the transitionobserved in experiment was referred to as \apparent"metal-insulator transition.The next interpretation change was caused by the�nding that the temperature dependence of the conduc-tivity in low-disordered 2D electron systems changessign at a critical density attributed to the metal-insulatortransition point [4]. The observed critical density corre-sponds to strong electron-electron interactions, whereasnoninteracting or weakly-interacting 2D systems areconsidered in the scaling concept. Moreover, the spinsusceptibility and e�ective mass in the least-disordered2D electron systems were found to increase at low densi-ties with a tendency to diverge at some electron densitythat is weakly dependent on disorder [5, 6]. This indi-cates that the metal-insulator transition observed in anumber of 2D electron systems is driven by interactions[7], while the disorder is of minor importance. Addi-tional con�rmation for this statement is provided by theobservation of the critical increase of the e�ective masswith increasing interactions in the 2D fermion systemcomposed of He3 atoms [8].There has been published a good deal of experimen-tal and theoretical work on the metal-insulator tran-sition in two dimensions and related phenomena (see,e.g., experimental reviews [9{12] and theoretical publi-cations [13{17]). The key question is whether the metal-insulator transition observed in low-disordered 2D elec-tron systems is a transition to the Wigner crystal. Themass divergence when the crystallization point is ap-proached on the metallic side was already demonstrated

in the paper [18] using Gutzwiller's theory. Recently,many properties of strongly-interacting 2D and 3D sys-tems have been explained within the concept of theWigner{Mott transition using dynamical mean-�eld the-ory [17].In this paper, we study the magnetic �eld of full spinpolarization Bc as a function of electron density ns forthe Wigner{Mott transition. The magnetic �eld is as-sumed to be parallel to the 2D electron system and acton electron spins only. We use a lattice model [18] byadapting the results of the papers [19, 20] to the problemto be solved. The real 2D electron system is replacedby lattice sites with density ns. If for the lattice intro-duced there is an energy gap between the lowest and nextbands, �lling every site with one electron results in aWigner crystal model. However, in the ground state, twoelectrons with anti-parallel spins can be located, despiterepulsion, on each site with some probability depend-ing on ns. Such sites determine the portion of mobileelectrons and, thus, the transport properties of the elec-tron system. For the case of noninteracting electrons,the model used corresponds to the half-�lled lowest en-ergy band. The noninteracting electrons in zero mag-netic �eld occupy all states up to the Fermi momentumkF, each state being �lled with spin-up and spin-downelectrons. In the lattice model, the probability to �ndon each site two electrons is equal to 1=4, which is thesame as the probability to �nd on each site no electrons.The momentum distribution function for the systemwith electron interactions in the metallic state is shownin Fig. 1a for zero magnetic �eld. All states are occupiedup to the Brillouin zone boundary k0. A jump of the dis-tribution function with height Z < 1 occurs at kF. Withdecreasing electron density both k0 and kF decrease, theratio kF=k0 being constant. As the critical density nc isapproached, the jump Z ! 0 and the distribution func-tion fu;d ! 0:5. The shaded region that spans up tok0 in the �gure corresponds to the Wigner crystal. Themany-electron wave function [19] describes the superpo-648 �¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 11 { 12 2012
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Fig. 1 Probability to occupy a state with momentum k asa function of momentum in a certain direction: (a) { forspin-unpolarized system; (b) { for spin-up electrons; (c) {for spin-down electrons. The shaded region correspondsto the Wigner crystalsition of the crystal state and the Fermi quasi-particleswith an e�ective mass m� that is inversely proportionalto the distribution function jump at the Fermi momen-tum kF: m�=m = 1=Z, where m is the band mass.The distribution function for electrons with di�er-ent spins in magnetic �elds is displayed in Fig. 1b and c.Both the quasi-particleweight Z and the Fermi momentaof quasi-particles with di�erent spins are in
uenced bymagnetic �eld. Evidently, the increase of magnetic �eldleads to kuF ! k0 and kdF ! 0. In what follows we�nd that with increasingmagnetic �eld the quasi-particleweight Z increases (decreases) for ns � nc (ns & nc)until at some degree of spin polarization, the electronsystem reaches by jump full spin polarization in whichcase every lattice site is �lled with one electron. Thepresence of the jump of the degree of spin polarizationgives rise to hysteresis with decreasing magnetic �eld.In accordance with the results [19, 21], the groundstate-averaged Hamiltonian in a parallel magnetic �eldB is writtenhHi = � Z4D0n2s(1� p2) + ��e2� n3=2s � p2nsg�BB; (1)where � is the portion of doubly occupied sites (0 < � << 1=2), e is the electron charge, � is the dielectric con-stant, D0 is the density of states of the spin-polarizednoninteracting electrons. The degree of spin polariza-tion p = (nu�nd)=ns is determined by the di�erence ofthe densities of spin-up and spin-down electrons, and thecoe�cient � is determined by the electron wave functionon the lattice site. The kinetic energy is counted from theband-averaged energy for noninteracting electrons. Therelation between Z and � taking account of correlationsis as followsZ = 2�1� p2 h(1 + p� 2�)1=2 + (1� p� 2�)1=2i2 : (2)

For p = 0, Eqs. (1), (2) reduce to the known ones in zeromagnetic �eld [18].It is necessary to �nd a minimum of the expression(1) over �, regarding the relation (2):@hH(�; p; ns)i@� = 0; (3)which yields a dependence �(p; ns)1� 4� + (1� 2�)(1� 4�)� p2[(1� 2�)2 � p2]1=2 = 2�ncns�1=2 ; (4)where nc = (�e2D0=2�)2.Note that for p = 0, the ground state energy is aminimum if � = 14 "1��ncns�1=2# : (5)At ns ! nc, both � and Z tend to zero, i.e., every lat-tice site is �lled with one electron, and the quasi-particlemass diverges m�m = nsns � nc : (6)In the opposite limiting case of ns ! 1, the values �and Z are � = 1=4 and Z = 1, and the quasi-particlemass is equal to m� = m.The dependence �(p) is shown in Fig. 2a for di�erent

Fig. 2. (a) { Portion of doubly occupied sites and (b) { thequasi-particle weight versus spin polarization at di�erentvalues of the interaction parametervalues of the interaction parameter nc=ns. If ns > 4nc,the value � zeroes only at p = 1, whereas at ns < 4ncthe equality � = 0 is the case over a whole range of p.We note that this fact is important for determining thedependence Bc(ns), and the density ns = 4nc manifestsitself as \apparent" critical density. The corresponding�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 11 { 12 2012



650 V.T.Dolgopolov, A.A. Shashkindependence Z(p) is represented in Fig. 2b. The value Zincreases (decreases) with spin polarization at ns > 4nc(ns < 4nc), attaining the limiting value Z = 1 (Z = 0).Interestingly, the spin states near p = 1 turn out to benon-equilibrium states. If the dependence hH(p)i is twominima separated by a maximum, the electron systemat T = 0 gets to the deeper minimum in a magnetic �eldwhere the maximum disappears, which causes hystere-sis.We shall start by considering the high-density regionns > 16nc. In the spirit of the paper [22], one needs to�nd a minimum of the Hamiltonian (1), (2) over p:@hH(�; p; ns)i@p = 0; (7)which yields 2�p[(1� 2�)2 � p2]1=2 = g�BBD0ns : (8)By solving Eqs. (4), (8) with p ! 1, we get the polar-ization �eldBc = nsg�BD0 "1� 2�ncns�1=2# : (9)The dependence obtained is the same as the one sug-gested earlier [5] and is similar to Bc(ns) observed inexperiment. Obviously, Eq. (9) cannot describe theequilibrium value Bc down to ns = 4nc, because theWigner{Mott transition in zero magnetic �eld occurs atthe lower density ns = nc.We solve the problem numerically at electron densi-ties near 4nc. There, the system behavior turns out tobe hysteretic. Using the dependence �(p) of Fig. 2, wecalculate the dependence hH(p)i for a �xed value of theinteraction parameter nc=ns at di�erent magnetic �elds,as shown in Fig. 3 for nc=ns = 0:6. In weak magnetic�elds, the energy has a minimum corresponding to therealized degree of spin polarization. As the magnetic�eld is increased, the minimum turns into an in
ectionand disappears entirely. The in
ection determines theupper polarization �eld at which the system state jumpsto p = 1, � = 0. The degree of spin polarization �rst in-creases linearly with magnetic �eld, then turns up, and�nally, the electron system reaches complete spin polar-ization by jump, as shown in Fig. 4. With decreasingmagnetic �eld there arises hysteresis. The electron sys-tem stays in the p = 1 state until the maximum at p < 1in the dependence hH(p)i (Fig. 3) disappears at the lowerpolarization �eld at which the system state jumps out ofp = 1 to close the hysteresis loop (Fig. 4). It is clearthat the lower polarization �eld is given by Eq. (9) atns > 4nc and is equal to zero at ns < 4nc.

Fig. 3. The ground state energy as a function of spin polar-ization at �xed nc=ns = 0:6 for di�erent magnetic �elds.The minimum is marked by arrows

Fig. 4. Hysteresis of the degree of spin polarization withchanging magnetic �eld at �xed nc=ns = 0:6 (a) andnc=ns = 0:2 (b)The dependence of the polarization �eld on electrondensity with increasing and decreasing magnetic �eldis displayed in Fig. 5 along with the e�ective mass asa function of electron density in zero magnetic �eld.Based on linear extrapolation of the high-density val-ues, the �eld Bc tends to zero at ns � 4nc, which is wellabove the density where the e�ective mass in zero mag-netic �eld diverges. Note that very low temperatures areneeded to observe the hysteresis in Bc because the max-imum in Fig. 3 is smeared due to thermal 
uctuationsalready at T � 0:1 K.In accordance with the solution, one might concludethat the magnetic �eld promotes crystallization at ns << 4nc, whereas at higher densities, the system state in�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 11 { 12 2012
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Fig. 5. (Color online) Polarization �eld as a function ofelectron density with increasing (solid black line) and de-creasing (dashed red line) magnetic �eld. Also shown bythe dash-dotted blue line is the e�ective mass in B = 0versus electron densitymagnetic �elds is the electron liquid. As a matter offact, the complete �lling of the �rst Brillouin zone inthe model used means crystallization only if the energygap is present for the model lattice. In turn, the energygap is determined by electron-electron interactions ondi�erent lattice sites so that in the frames of the model[18, 19, 20], one cannot say whether or not the energygap is present. Nevertheless, one can expect that theprediction is qualitatively correct: the gap in magnetic�elds should survive at electron densities above nc anddisappear at yet higher densities. Within the hysteresisuncertainty, the low-density part of Bc(ns) separates thecorrelated electron liquid and crystal and corresponds tothe metal-insulator transition. The last fact is con�rmedby comparison of the experimental results of Ref. [5] andRefs. [23, 24].Another prediction of our calculations is that the ef-fective mass in a single-valley electron system should de-crease with magnetic �eld and reach the noninteractingelectron mass at the onset of complete spin polarizationif the system stays in the metallic state. The same be-havior of the mass should be the case for full isospinpolarization in a two-valley spin-polarized electron sys-tem. According to the statements of the papers [25, 26],the e�ect has been observed recently in the 2D electronsystem in AlAs quantum wells.The magnetic �eld of full spin polarization as a func-tion of electron density in the single-valley 2D electronsystem of GaAs/AlGaAs heterostructures was studied inRef. [27]. Because of large thickness of the 2D system,

the dependence Bc(ns) is strongly distorted by orbitale�ects. Nevertheless, its slope for low Bc is in agree-ment with the slope expected from Eq. (9), and Bc(ns)extrapolates to zero at a �nite density [10].The most complete and detailed experimental infor-mation has been obtained for two-valley 2D electron sys-tems. However, our calculations are not relevant for suchsystems, and comparison with those experiments is notjusti�ed.It is interesting to compare our results with alter-native calculations. The behavior of the e�ective massnear the critical density of Eq. (6) has been reproducedin Ref. [17]. There, the dependence Bc(ns) has also beenobtained which, unlike our results, does not reveal hys-teresis.It is worth noting that the polarization �eldBc versusns for a two-valley 2D electron system has been calcu-lated using quantum Monte-Carlo simulations [22]. Inthe clean limit (kFl� 1, where l is the mean free path),the divergence of the mass and the critical Bc(ns) arenot found. However, it is strange that the degree of spinpolarization in the paper [22] is proportional to magnetic�eld, regardless of disorder and interaction strength.In summary, we have calculated the dependence ofthe magnetic �eld of complete spin polarization on elec-tron density for the Wigner{Mott transition in a single-valley 2D electron system. The following predictions ofthe model used have not yet been con�rmed in exper-iment. In the metallic region above the Wigner{Motttransition, non-equilibrium spin states are expected,which should lead to a hysteretic behavior of the magne-tization. Linear extrapolation to zero of the high-densityvalues of the polarization �eld yields a critical densitythat exceeds the Wigner{Mott transition point by thefactor of about four.We gratefully acknowledge discussions withI.S. Burmistrov, V.Dobrosavljevic, and S.V.Krav-chenko. This work was supported by RFBR, RAS, andthe Russian Ministry of Sciences.1. T. Ando, A.B. Fowler, and F. Stern, Rev. Mod. Phys.54, 435 (1982).2. L. P. Gor'kov, A. I. Larkin, and D.E. Khmel'nitskii,JETP Lett. 30, 228 (1979).3. E. Abrahams, P.W. Anderson, D.C. Licciardello, andT.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).4. S. V. Kravchenko, G.V. Kravchenko, J. E. Furneaux etal., Phys. Rev. B 50, 8039 (1994).5. A.A. Shashkin, S. V. Kravchenko, V.T. Dolgopolov, andT.M. Klapwijk, Phys. Rev. Lett. 87, 086801 (2001).6. S. A. Vitkalov, H. Zheng, K.M. Mertes et al., Phys. Rev.Lett. 87, 086401 (2001).�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 11 { 12 2012



652 V.T.Dolgopolov, A.A. Shashkin7. A. Punnoose and A.M. Finkelstein, Science 310, 289(2005).8. A. Casey, H. Patel, J. Nyeki et al., Phys. Rev. Lett. 90,115301 (2003).9. S. V. Kravchenko and M.P. Sarachik, Rep. Prog. Phys.67, 1 (2004).10. A.A. Shashkin, Physics-Uspekhi 48, 129 (2005).11. V. F. Gantmakher and V.T. Dolgopolov, Physics-Uspekhi 51, 3 (2008).12. A.A. Shashkin and S.V. Kravchenko, in UnderstandingQuantum Phase Transitions (ed. by L.D. Carr), Taylor& Francis, Boca Raton, 2010.13. B. Spivak and S.A. Kivelson, Phys. Rev. B 70, 155114(2004).14. S. Pankov and V. Dobrosavljevic, Phys. Rev. B 77,085104 (2008).15. B. Spivak, S.V. Kravchenko, S.A. Kivelson, and X.P.A.Gao, Rev. Mod. Phys. 82, 1743 (2010).16. H. Terletska, J. Vucicevic, D. Tanaskovic, and V. Do-brosavljevic, Phys. Rev. Lett. 107, 026401 (2011).

17. V. Dobrosavljevic, in Conductor Insulator QuantumPhase Transitions (ed. by V. Dobrosavljevic, N. Trivedi,and J.M. Valles Jr.), Oxford University Press, 2012.18. V.T. Dolgopolov, JETP Lett. 76, 377 (2002).19. M.C. Gutzwiller, Phys. Rev. A 137, 1726 (1965).20. W.F. Brinkman and T.M. Rice, Phys. Rev. B 2, 4302(1970).21. See Eqs. (B4) and (B6) of Ref. [19].22. G. Fleury and X. Waintal, Phys. Rev. B 81, 165117(2010).23. V.T. Dolgopolov, G. V. Kravchenko, A.A. Shashkin,and S.V. Kravchenko, JETP Lett. 55, 733 (1992).24. A.A. Shashkin, S. V. Kravchenko, V.T. Dolgopolov, andT.M. Klapwijk, Phys. Rev. Lett. 87, 266402 (2002).25. M. Padmanabhan, T. Gokmen, N.C. Bishop, and M.Shayegan, Phys. Rev. Lett. 101, 026402 (2008).26. T. Gokmen, M. Padmanabhan, and M. Shayegan, Phys.Rev. B 81, 235305 (2010).27. J. Zhu, H. L. Stormer, L.N. Pfei�er et al., Phys. Rev.Lett. 90, 056805 (2003).

�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 11 { 12 2012


