
Pis'ma v ZhETF, vol. 95, iss. 11, pp. 672 { 675 c
 2012 June 10CPT, Lorentz invariance, mass di�erences, and chargenon-conservationA.D.Dolgov+���, V.A.Novikov+�+ Novosibirsk State University, 630090 Novosibirsk, Russia�Institute of Theoretical and Experimental Physics, 113259 Moscow, Russia�Dipartimento di Fisica, Universit�a degli Studi di Ferrara, I-44100 Ferrara, Italy�Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, I-44100 Ferrara, ItalySubmitted 25 April 2012A non-local �eld theory which breaks discrete symmetries, including C, P, CP, and CPT, but preservesLorentz symmetry, is presented. We demonstrate that at one-loop level the masses for particle and antiparticleremain equal due to Lorentz symmetry only. An inequality of masses implies breaking of the Lorentz invarianceand non-conservation of the usually conserved charges.1. Introduction. The interplay of Lorentz sym-metry and CPT symmetry was considered in the lit-erature for decades. The issue attracted an additionalinterest recently due to a CPT-violating scenario in neu-trino physics with di�erent mass spectrum of neutrinosand antineutrinos [1]. Theoretical frameworks of CPTbreaking in quantum �eld theories, in fact in string theo-ries, and detailed phenomenology of oscillatingneutrinoswith di�erent masses of � and �� was further studied inpapers [2].On the other hand, it was argued in ref. [3] that vi-olation of CPT automatically leads to violation of theLorentz symmetry [3]. This might allow for some morefreedom in phenomenology of neutrino oscillations.Very recently this conclusion was revisited in ourpaper [4]. We demonstrated that �eld theories with dif-ferent masses for particle and antiparticle are extremelypathological ones and can't be treated as healthy quan-tum �eld theories. Instead we constructed a class ofslightly non-local Lorentz invariant �eld theories withthe explicit breakdown of CPT symmetry and with thesame masses for particle and antiparticle.An example of such theory is a non-local QED withthe Lagrangian L = L0 + Ln:l, where L0 is the usualQED Lagrangian:L0 = �14F 2�� (x) + � (x)[i@̂ � eÂ(x)�m] (x); (1)and Ln:l is a small non-local addition:Ln:l(x) = g Z dy� (x)
� (x)A�(y)K(x� y): (2)Here F��(x) = @�A�(x) � @�A�(x) is the electromag-netic �eld strength tensor, A�(x) is the four-potential,and  (x) is the Dirac �eld for electrons.

Non-local form-factor K(x � y) is chosen in such away that it explicitly breaks T -invariance, e.g.K(x� y) = �(x0 � y0)�[(x� y)2]e�(x�y)2=l2 ; (3)where l is a scale of the non-locality and the Heavisidefunctions �(x0� y0)�[(x� y)2] are equal to the unity forthe future light-cone and are identically zero for the pastlight-cone.Non-local interaction, eq. (2), breaks T-invariance,preserves C- and P-invariance and, as a result, breaksCPT-invariance. This construction demonstrates thatCPT-symmetry can be broken in Lorentz-invariant non-local �eld theory! The masses of an electron, m, and ofa positron, ~m, remain identical to each other in this the-ory despite breaking of CPT-symmetry. The evidentreason is that the interaction Ln:l(x) is C-invariant andits exact C-symmetry preserves the identity of massesand anti-masses.In this note we would like to study further the rela-tion between mass di�erence for a particle and an an-tiparticle and CPT-symmetry. We start from the stan-dard local free �eld theory of electrons with the usualdispersion relation between energy and momentum:p2� = p20 � p2 = m2 = ~m2 (4)and introduce a non-local interaction that breaks thewhole set of discrete symmetries, i.e. C, P, CP, T, andCPT. So there is no discrete symmetry which preservesequality of m to ~m in this case. Hence in principle theinteraction can shift m from ~m. But an explicit one-loop calculation demonstrates that this is not true. So672 �¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 11 { 12 2012



CPT, Lorentz invariance, mass di�erences, and charge non-conservation 673we conclude that it is Lorentz-symmetry that keeps theidentity m = ~m: (5)This conclusion invalidates the experimental evi-dence for CPT-symmetry based on the equality ofmasses of particles and antiparticles. CPT may bestrongly broken in a Lorentz invariant way and in sucha case the masses must be equal. Another way around,if we assume that the masses are di�erent, then Lorenzinvariance must be broken. Lorentz and CPT violatingtheories would lead not only to mass di�erence of par-ticles and antiparticles but to much more striking phe-nomena such as violation of gauge invariance, currentnon-conservation, and even to a breaking of the usualequilibrium statistics (for the latter see ref. [5]).2. C, CP, and CPT violating QFT. To formulatea model we start with the standard QED Lagrangian:L0 = �14F��(x)F�� (x) + � (x)[i@̂ � eÂ(x) �m] (x);(6)and add the interaction of a photon, A�, with an axialcurrent L1 = g1� (x)
�
5 (x)A�(x) (7)and with the electric dipole moment of an electronL2 = g2� (x)���
5 (x)F�� (x): (8)The �rst interaction, L1, breaks C- and P-symmetryand conserves CP-symmetry. The second interactionbreaks P- and CP-symmetry. Still the sum of La-grangians L = L0 + L1 + L2 (9)preserves CPT-symmetry. To break the CPT we modifythe interaction L1 to a non-local one ~L1:L1 ! ~L1(x) = Z dyg1� (x)
�
5 (x)K(x� y)A�(y):(10)With this modi�cation the modelL = L0 + �L1 + L2 (11)breaks all discrete symmetries.3. One-loop calculation. In general to calculatehigh order perturbative contributions of a non-local in-teraction into S-matrix one has to modify the Dysonformulae for S-matrix with T -ordered exponentialS = T �exp�iZ d4xLint�� (12)

and the whole Feynman diagram techniques.But in the �rst order in the non-local interaction onecan work with the usual Feynman rules in the coordinatespace. The only di�erence is that one of the vertices be-comes non-local.4. Mass and wave function renormalization forparticle and antiparticle. We start with the standardfree �eld theory for an electron, i.e.L = � [i@̂ �m] (13)that �xes the usual dispersion lawp2 = p20 � p2 = m2: (14)The self-energy operator, �(p), contributes both tothe mass renormalization and to the wave function renor-malization. In general one-loop e�ective Lagrangin canbe written in the form:L(1)e� = � [i(A
� +B
�
5)@� � (m1 + im2
5)] : (15)It is useful to rewrite the same one-loop e�ective La-grangian in terms of the �eld for antiparticle  c: c = (�i)[� 
0
2]T; (16)L(1)e� = � c[i(A
5 �B
�
5)@� � (m1 + im2
5)] c: (17)We see that the mass term is the same for  and for c, but the wave function renormalization is di�erent:the coe�cient in front of the pseudovector changes itssign. This change is unobservable since one can removeB
�
5 and im2
5 terms by rede�ning of variables. In-deed � (A+B
5)
� � � 0pA2 +B2
� 0; (18)where  = (cosh�+ i
5 sinh�) 0; (19)tanh 2� = B=A; (20)and � (m1 + i
5m2) �qm21 +m22� 0 0; (21)where  = exp(i
5�) 0; (22)tan 2� = m2=m1: (23)4 �¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 11 { 12 2012



674 A.D.Dolgov, V.A.NovikovThis simple observation is su�cient to conclude thattechnically there is no possibility to write one-loop cor-rections that produce di�erent contributions for particleand antiparticle. Still it is instructive to check directlythat the di�erence is zero.5. Explicit one-loop calculation. We are look-ing for a one-loop contribution into self-energy operator�(p) that breaks C-, CP-, and CPT-symmetries and thatchanges the chirality of the fermion line. It is clear thatthis contribution potentially can be di�erent (oppositein sign) for particle  and antiparticle  c.To construct such contribution we need both anom-alous interactions ~L1 and L2. Indeed interaction L2changes chirality and breaks CP symmetry, while non-local interaction ~L1 breaks C and CPT and leaves thechirality unchanged. In combination they break all dis-crete symmetries and change chirality. There are twodiagrams that are proportional to g1g2 (see Figure).
The diagram contributing to the mass di�erence of electronand positron. The blob represents a non-local form-factorWe will calculate these diagrams in two steps. The�rst step is a pure algebraic one. Self-energy �(p) is 4�4matrix that was constructed from a product of threeother 4�4 matrices, i.e. two vertices and one fermionpropagator. Notice that any 4�4 matrix can be decom-posed as a sum over complete set of 16 Dirac matrices.In this decomposition of �(p) we need terms that are oddin C and changes chirality. Fortunately there is only oneDirac matrix with these properties. That is ��� . So�(p) = ���I��(p); (24)where I�� represents Feynman (divergent) integral. Wecould obtain eq. (24) after some long explicit algebraictransformation, but the net result is determined by thesymmetry only.The second step is the calculation of Feynman in-tegrals. Again fortunately we do not need actual cal-culations. Indeed due to the Lorentz symmetry of thetheory this I�� should be a tensor that depends only onthe momentum of fermion line p. The general form forI�� is I�� = Ag�� +Bp�p� : (25)

As a result we get�(p) = ���I�� � 0 (26)and we conclude that the one-loop contribution into pos-sible mass di�erence is identically zero1).6. CPT and charge non-conservation. Thereis widely spread habit to parametrize CPT violation byattributing di�erent masses to particle and antiparticle.This tradition is traced to an old time of the �rst obser-vation of K � �K-mesons oscillation.For K-mesons with a given momenta q the theoryof oscillation is equivalent to a non-hermitian QuantumMechanics (QM) with two degrees of freedom. Diag-onal elements of 2 � 2 Hamiltonian matrix representmasses for particle and antiparticle. Their unequal-ity breaks CPT-symmetry. Experimental bounds onmass di�erence are considered as bounds on the CPT-symmetry violation parameters. Such strategy has noexplicit loop-holes and is still used for parametrizationof CPT-symmetry violation in D and B meson oscilla-tions.Quantum Field Theory (QFT) deals not with onemode for a given momenta but rather with an in�nitesum over all momenta. The set of plane waves withall possible momenta for particle and antiparticle is acomplete set of orthogonal modes and an arbitrary �eldoperator can be decomposed over this set.Naive generalization of CPT-conserving QFT toCPT-violating QFT was to attribute di�erent massesfor particle and antiparticle [1, 2]). Say for a complexscalar �eld they use the in�nite sum [1, 2]�(x) =Xq "a(q) 1p2Ee�i(Et�qx)+b+(q) 1p2~Eei( ~Et�qx)# ; (27)where (a(q); a+(q)), (b(q), b+(q)) are annihilation andcreation operators, and (m;E) and ( ~m; ~E) are massesand energies of particle and antiparticle respectively.Greenberg [3] found that this construction runs intotrouble. The dynamic of �elds determined according toeq. (27) cannot be a Lorentz-invariant one.We'd like to notice that for charged particles (sayfor electrons and positrons) similar generalization of the�eld theory breaks not only the Lorentz symmetry butthe electric charge conservation as well. The reason is1)Recently our former collaborators published a paper wherethey demonstrated that for a particle with a non-standard disper-sion law the quantity which they de�ne as mass can be di�erentfor particle and antiparticle [6].�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 11 { 12 2012



CPT, Lorentz invariance, mass di�erences, and charge non-conservation 675very simple. For the standard QED the operator of elec-tric charge Q̂(t) can be written in the formQ̂(t) =Xq �a+(q)a(q) � b+(q)b(q)� : (28)Operator Q̂(t) is a diagonal one, i.e. there are no mixedterms with di�erent momenta. The modes with di�er-ent momenta are orthogonal to each other and disappearafter integration over space. This is a technical explana-tion why one can construct a time-independent operator.If one shifts the mass of electron from the mass ofpositron the situation drastically changes. For electronthe modes with di�erent momenta are still orthogonal toeach other. The same is true for the modes of positron,they are also orthogonal among themselves. But thereis no reason for wave function of electron with mass mbe orthogonal to wave functions for positron with mass~m. As a result one obtainesQ(t) =Xq �a+(q)a(q) � b+(q)b(q)� ++ CXq (E � ~E)p4E ~E hb(q)a(�q)e�i(E+~E)t + h:c:i ; (29)where constant C depends on the sorts of particles andon the de�nition of the charge.We can conclude from this equation that non-conservation of charge exhibits itself only in annihila-tion processes but not in the scattering processes. Sothere is no immediate problem with the Coulomb law.Nevertheless non-conservation of this type is also ab-solutely excluded by the experiment. In a case of charge-nonconservation annihilation of particle and antiparticlewith a creation of the in�nite number of soft masslessphotons creates a terrible infrared problem. Infraredcatastrophe can not be avoided by usual summation

over infrared photons. On the other hand, as is arguedin ref. [7], the electron decay might be exponentiallysuppressed due to vanishing of the corresponding form-factor created by virtual longitudinal photons.Similar arguments lead to the conclusion that con-servation of energy cannot survive as well in a theorywith di�erent masses of particles and antiparticles.7. Conclusion. We have shown that in the frame-work of a Lorentz invariant �eld theory it is impossibleto have di�erent masses of particles and antiparticles,even if CPT (together with C and P) invariance is bro-ken. On the other hand, unequal masses of particles andantiparticles imply breaking of the Lorentz invariance.Moreover, in such theories charge and energy conserva-tion seem to be broken as well.This work was supported by the Grant of Gov-ernment of Russian Federation (# 11.G34.31.0047), by#NSh-3172.2012.2, and by the Grant RFBR #11-02-00441, 12-02-00193.1. H. Murayama and T. Yanagida, Phys. Lett. B 520, 263(2001).2. G. Barenboim, L. Borissov, J. D. Lykken, and A.V.Smirnov, JHEP 0210, 001 (2002); G. Barenboim, L.Borissov, and J. D. Lykken, Phys. Lett. B 534, 106(2002); G. Barenboim, J. F. Beacom, L. Borissov, and B.Kayser, Phys. Lett. B 537, 227 (2002); G. Barenboim, L.Borissov, and J. D. Lykken, hep-ph/0212116.3. O.W. Greenberg, Phys. Rev. Lett. 89, 231602 (2002).4. M. Chaichian, A.D. Dolgov, V.A. Novikov, and A. Ture-anu, Phys. Lett. B 699, 177 (2011).5. A.D. Dolgov, Phys. Atom. Nucl. 73, 588 (2010); e-Print:arXiv:0903.4318 [hep-ph].6. M. Chaichian, K. Fujikawa, and A. Tureanu, hep-th/1203.0267.7. M. B. Voloshin and L.B. Okun, Pis'ma v ZhETF 28, 156(1978).
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