
Pis'ma v ZhETF, vol. 95, iss. 12, pp. 703 { 706 c 2012 June 25Solitary wave interaction in a compact equation for deep-water gravitywavesF. Fedele1), D.Dutykh�School of Civil and Environmental Engineering & School of Electrical and Computer Engineering, Georgia Institute of Technology,GA 30332 Atlanta, USA�LAMA UMR 5127 CNRS, Universit�e de Savoie, Campus Scienti�que, 73376 Le Bourget-du-Lac Cedex, FranceSubmitted 13 April 2012In this study we compute numerical traveling wave solutions to a compact version of the Zakharov equationfor unidirectional deep-water waves recently derived by Dyachenko & Zakharov [1]. Furthermore, by means ofan accurate Fourier-type spectral scheme we �nd that solitary waves appear to collide elastically, suggestingthe integrability of the Zakharov equation.1. Introduction. In water waves theory, the Eulerequations describe the irrotational ow of an ideal in-compressible uid of in�nite depth with a free surface.Their symplectic formulation was discovered by [2] interms of the free-surface elevation �(x; t) and the veloc-ity potential '(x; t) = �[x; z = �(x; t); t] evaluated atthe free surface of the uid. Here, �(x; t) and '(x; t)are conjugated canonical variables with respect to theHamiltonian H given by the total wave energy. It iswell known that the Euler equations are completely in-tegrable in several important limiting cases. For exam-ple, in a two-dimensional (2-D) ideal uid, unidirectionalweakly nonlinear narrowband wave trains are governedby the Nonlinear Schr�odinger (NLS) equation, which isintegrable [3]. Integrability also holds for certain equa-tions that models long waves in shallow waters, in par-ticular the Korteweg{de Vries (KdV) equation (see, forexample, [4{7]) or the Camassa{Holm (CH) equation [8].For these equations, the associated Lax-pairs have beendiscovered and the Inverse Scattering Transform [4{7]unveiled the dynamics of solitons, which elastically in-teract under the invariance of an in�nite number of time-conserving quantities.An important limiting case of the Euler equationsfor an ideal free-surface ow was formulated by Za-kharov [2, 9]. By expanding the Hamiltonian H upto third order in the wave steepness, he derived anintegro-di�erential equation in terms of canonical con-jugate Fourier amplitudes, which has no restrictions onthe spectral bandwidth. To derive the Zakharov (Z)equation, fast non-resonant interactions are eliminatedvia a canonical transformation that preserves the Hamil-tonian structure [9, 10]. The integrability of the Z equa-tion is still an open question, but the fully nonlinear1)e-mail: fedele@gatech.edu

Euler equations are non-integrable [11]. Indeed, non-integrability can be easily proven by considering theterms of the perturbation series of the Hamiltonian inpowers of the wave steepness limited on their resonantmanifolds. Integrability does not hold if at least one ofthese amplitudes is nonzero. In this regard, [11] conjec-tured that the Z equation for unidirectional water waves(2-D) is integrable since the nonlinear fourth-order termof the Hamiltonian vanishes on the resonant manifoldleaving only trivial wave-wave interactions, which justcause nonlinear frequency shifts of the Fourier ampli-tudes. Recently, Dyachenko & Zakharov realized thatsuch trivial resonant quartet-interactions can be furtherremoved by a canonical transformation [1]. This drasti-cally simpli�es the Z equation to the compact formibt = 
b+ i8nb�(b2x)x � �b�x(b2)x�xo�� 14hbKfjbxj2g � �bxKfjbj2g�xi; (1)where the canonical variable b scales with the wave sur-face � as b � p2g=!0� and the subscripts t and x de-note partial derivatives with respect to space and time,respectively. The symbols of the pseudo-di�erential op-erators 
 and K are given, respectively, by pgjkj andjkj, where k is the Fourier transform parameter. In thisstudy, we wish to explore (1), hereafter referred to ascDZ, for a numerical investigation of special solutionsin the form of solitary waves. This Letter is structuredas follows. We �rst derive the envelope equation asso-ciated to cDZ. Then, ground states and traveling wavesare numerically computed by means of the Petviashvilimethod [12, 13]. Finally, their nonlinear interactions arediscussed.�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 11 { 12 2012 703



704 F. Fedele, D. Dutykh2. Envelope equation. Consider the followingansatz for wave trains in deep waterb(X;T ) = "r2g!0 a0B(X;T )ei(X�T ); (2)where B is the envelope of the carrier wave ei(X�T ), andX = "k0(x� cgt), T = "2!0t, with k0 = !0=g and !0 ascharacteristic wavenumber and frequencies. The smallparameter " = k0a0 is a characteristic wave steepnessand cg is the wave group velocity in deep water. Usingansatz (2), the cDZ equation (1) reduces to the envelopeformiBT = 
"B � "2hBKfjSBj2g � S�SBKfjBj2g�i++ i4�B�S[(SB)2] + iB�(SB)2 � 2S�BjSBj2�	; (3)where S = "@X + i. The approximate dispersion opera-tor 
" is de�ned as follows
" := 18@XX + i16"@XXX � 5128"2@XXXX +O("3);where o("3) dispersion terms are neglected. Equation(3) admits three invariants, viz. the action A, momen-tum M and the Hamiltonian H given, respectively, byA = ZRB�B dx; M = ZR i�B�SB �B(SB)�� dx;andH = ZRhB�
"B + i4 jSBj2[B(SB)� �B�SB]�� "2 jSBj2K(jBj2)i dx:If we expand the operator S in terms of ", (3) canbe written in the form of the generalized derivative NLSequation iBT = 
"B + jBj2B � 3i"jBj2BX �� "2BKfjBj2g+ "2N2(B) + "3N3(B) = 0;whereN2(B) = �32B�(BX)2 +BjBX j2 � jBj2BXX ++ 12B2B�XX + i2�BKjBj2�X ++ i2hBK(B�BX �BB�X) +BXKjBj2i;and

N3(B) = � i2 jBX j2BX + i2BXX(B�BX �BB�X)�� 12BBXB�XX � 12hBKjBX j2 � �BXKjBj2�Xi:To leading order the NLS equation is recovered, andkeeping terms up to O(") yields a Hamiltonian versionof the Dysthe equation [14], viz.iBT = �18@XX + i"16@XXX�B + jBj2B �� 3i"jBj2BX � 12"BKjBj2; (4)hereafter referred to as cDZ-Dysthe (see also [15]). Notethat the original temporal Dysthe equation [14] is notHamiltonian since expressed in terms of multiscale vari-ables, which are usually non canonical (see, for example,[16]).3. Ground states and travelling waves. Con-sider the envelope cDZ equation (3). We construct nu-merically ground states and traveling waves (TW) of theform B(X;T ) = F (X � cT )e�i!T , where c and ! aregeneric parameters and the function F (: : : ) is in generalcomplex. After substituting this ansatz in (3) we obtainthe following nonlinear steady equation (in the movingframe X � cT ) LF = N (F );where L = ! � ic � 
" and N (F ) denotes the nonlin-ear part of the right-hand side of (3). This equationis solved using the Petviashvili method [12, 13], whichhas been successfully applied in deriving TWs of the spa-tial version of the Dysthe equation [16]. Without loosinggenerality, hereafter we just consider the leading term ofthe dispersion operator, viz. 
" = 18@xx, since the soli-ton shape is only marginally sensitive to the higher orderdispersion terms (see [17] for more details). The depen-dence of the invariant A on the frequency ! is shown onFig. 1 for di�erent values of the propagation speed c = 0,0:1 and 0:2, respectively. In the same Figure we also re-port the action A of solitary waves of the cDZ-Dystheequation (4), which shows a similar qualitative behav-iour as that of cDZ. The monotonic increase of A with !indicates that ground states are stable in agreement withthe Vakhitov{Kolokolov criterion [18], since dA=d! > 0(see also [19, 13]). This conclusion is also con�rmed bydirect numerical simulations of the evolution of groundstates under the cDZ dynamics using a highly-accurateFourier-type spectral scheme [20, 21], see also [16]. Inparticular, to improve the stability of the time marchingscheme, we employ the integrating factor technique [22],and the resulting system of ODEs is discretized in spaceby the Verner's embedded adaptive 9(8) Runge{Kutta�¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 11 { 12 2012



Solitary wave interaction in a compact : : : 705

Fig. 1. ActionA dependence on the frequency ! for " = 0:2and several values of the propagation speed: c = 0, 0:1 and0:2scheme. In all the performed simulations the accuracyhas been checked by following the evolution of the invari-ants A, M and H. From a numerical point of view thecDZ equation becomes gradually sti�er as the steepnessparameter " increases. As a consequence, the number ofFourier modes was always chosen to ensure the conser-vation of the invariants close to � 10�13.We also investigate the interaction of smooth trav-eling waves under the cDZ dynamics (3) using the de-veloped Fourier-type pseudo-spectral method. Considerthe interaction of a system of four travelling wave solu-tions under the cDZ equation dynamics for " = 0:10,where a solitary wave (! = 0:20, c = 0:30) travelsthrough an array of three equally spaced ground states(! = 0:05, c = 0). Fig. 2 shows the evolution of the sys-

Fig. 2. Elastic collision of four solitary waves under the cDZdynamics (" = 0:10)

tem in time. One can see how the solitary wave passesthrough the ground states without altering its shape, butwith a slight phase shift. The interaction appears elasticas clearly seen in Fig. 3 (see also the zoomed detail in

Fig. 3. Initial shape (1) and after the collision (2) of atravelling wave (! = 0:20, c = 0:30, " = 0:1) with threeequally spaced ground states (! = 0:05, c = 0, " = 0:1)the left upper corner). This suggests the integrabilityof the cDZ equation (3) in agreement with the recentresults of Dyachenko et al. [23]. We also perform asimilar numerical experiment for the associated Hamil-tonian version of the Dysthe equation, viz. (4). Namely,the numerical set-up consists of two counter-propagatingsolitary waves (" = 0:1, ! = 0:20 and c = �0:20), whichencounter two ground states (c = 0) along their paths.The space-time plot of the envelope evolution is shownon Fig. 4, and in Fig. 5 one can observe that the collisionis inelastic.

Fig. 4. Solitary waves collision under the cDZ-Dysthe dy-namics (" = 0:10)6 �¨±¼¬  ¢ ���� ²®¬ 95 ¢»¯. 11 { 12 2012
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Fig. 5. Inelastic collision of four solitary waves under thecDZ-Dysthe dynamics (" = 0:10)4. Conclusions. Special travelling wave solutionsof the cDZ equation derived by Dyachenko & Zakharov[1] are numerically constructed using the Petviashvilimethod. The stability of ground states agrees withthe Vakhitov{Kolokolov criterion [18]. Furthermore,by means of an accurate Fourier-type pseudo-spectralscheme, it is shown that solitary waves appear to collideelastically, suggesting the integrability of the cDZ equa-tion, but not that of the associated Hamiltonian Dystheequation.D. Dutykh acknowledges the support from FrenchAgence Nationale de la Recherche, project MathOc�ean(Grant #ANR-08-BLAN-0301-01).1. A. I. Dyachenko and V.E. Zakharov, JETP Lett. 93(12),701 (2011).2. V. E. Zakharov, J. Appl. Mech. Tech. Phys. 9, 190 (1968).3. V. E. Zakharov and A.B. Shabat, Soviet Physics-JETP34, 62 (1972).4. M. J. Ablowitz, D. J. Kaup, A.C. Newell, and H. Segur,Stud. Appl. Math. 53, 249(1974).
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