
Pis'ma v ZhETF, vol. 96, iss. 2, pp. 93 { 96 c 2012 July 25SLE martingales in coset conformal �eld theoryA.Nazarov1)Department of High-Energy and Elementary Particle Physics, Faculty of Physics andChebyshev Laboratory, Faculty of Mathematics and Mechanics,SPb State University 198904 S.-Petersburg, RussiaSubmitted 14 May 2012Scharmm{Loewner evolution (SLE) and conformal �eld theory (CFT) are popular and widely used instru-ments to study critical behavior of two-dimensional models, but they use di�erent objects. While SLE hasnatural connection with lattice models and is suitable for strict proofs, it lacks computational and predictivepower of conformal �eld theory. To provide a way for the concurrent use of SLE and CFT we consider CFTcorrelation functions which are martingales with respect to SLE. We establish connection between parametersof Schramm{Loewner evolution on coset space and algebraic data of coset conformal �eld theory. Then wecheck the consistency of our approach with the behaviour of parafermionic and minimal models. Coset modelsare connected with o�-critical massive �eld theories and we discuss implications for SLE.1. Introduction. Schramm{Loewner evolution [1]is a stochastic process satisfying stochastic di�erentialeq. (1). A solution of eq. (1) can be seen as probabilitymeasure on random curves (called SLE traces). SLE isuseful for the study of critical behavior [2, 3], since formany lattice models the convergence of domain walls toSLE traces can be proved [4, 5]. Practical computationswith SLE rely on Ito calculus while proofs use discretecomplex analysis [6].Conformal �eld theory [7] is formulated in terms offamilies of quantum �elds which usually has no directmicroscopic interpretation. On the other hand CFT hase�cient computational tools such as Virasoro symmetry,Knizhnik{Zamolodchikov equations, fusion algebra etcand provides numerous predictions, such as celebratedCardy formula [8, 9] which gives crossing probability forcritical percolation.Combination of these two approaches is immenselypowerful, so it is important to �nd objects which can bestudied from both points of view.We present a new class of such observables in cosetconformal �eld theory { correlation functions which aremartingales with respect to Schramm{Loewner evolu-tion with additional Brownian motion on factor-spaceof Lie group G by subgroup A [10]. We derive relationsconnecting SLE and CFT parameters. We then checkthe consistency of these results with the earlier resultsfor parafermionic observables [11].All minimal unitary models can be obtained bycoset construction. Coset structure leads to speci�c o�-critical behavior. Massive excitations of coset CFTs aregiven by a�ne Toda �eld theories [12{14]. Recent ex-perimental study con�rming this result attracted a lot1)e-mail: anton.nazarov@hep.phys.spbu.ru

of attention [15]. In conclusion we discuss possible con-nections of massive CFT perturbations with o�-criticalSLEs (containing additional drift term [16]).2. Martingale conditions. Consider some criti-cal lattice model on the upper half-plane H with the cutalong a critical interface t (domain wall up to somelength t). We denote this slit domain by H t = H n t.Assume that t satis�es restriction property and is con-formally invariant [2]. Then conformal map gt : H t ! Hsatis�es stochastic di�erential equation [1]:@gt(z)@t = 2gt(z)�p��t ; (1)where �t is the Brownian motion. The dynamic of thetip zt of critical curve t (tip of SLE trace) is given bythe law zt = g�1t (p��t).For us it is convenient to use the map wt(z) == gt(z)�p��t, so the eq. (1) becomesdwt = 2dt=wt �p�d�t: (2)Consider N -point correlation function of boundaryconformal �eld theory with boundary condition chang-ing operators sitting at the tip of SLE trace and at thein�nity:F(fzi; �zigNi=1)Ht= h'(zt)�1(z1; �z1) : : : �n(zn; �zn)'(1)i ;(3)where �i are bulk primary �elds with conformal weightshi and '(zt) is boundary condition changing operator.Let g be a (semisimple) Lie algebra of a Lie groupG and a { Lie algebra of a subgroup A � G. Denote byxe embedding index for a! g.Primary �elds in coset models are labeled by pairs(�; �) of weights for g- and a-representations. For each ��¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 1 { 2 2012 93



94 A.Nazarovthe set of possible weights � includes those which appearin the decomposition L(�)g =L�H�� 
L(�)a . (Some pairsare equivalent, see [17, 18].) We assume that boundary�eld ' is also primary and is labeled by weights (�; �).We use the conformal map w(z) : H n t ! H torewrite expression (3) in the whole upper half plane:F(fzi; �zig)Ht ==Y�@w(zi)@zi �hi Y�@ �w(�zi)@�zi ��hi F(fwi; �wig)H : (4)We can extend the de�nition of F to the whole planeby doubling the number of �elds �i [19, 20] and by con-sidering wi; �wi as independent variables. To simplifynotations we will write F(fwig2Ni=1).G=A-coset conformal �eld theory can be realized asa WZNW-model (with gauge group G) interacting withpure gauge �elds of gauge group A � G [21, 22]. Theaction is written in terms of �elds  : C ! G and�; �� : C ! A:SG=A(; �) = � k8� ZS2 d2x K(�1@�; �1@�)�� k24� ZB �ijkK�~�1 @~@yi ; �~�1 @~@yj ~�1 @~@yk �� d3y++ k4� ZS2 d2z �K(�; �1�@)�K[��; (@)�1]++K(�; �1��)�K(�; ��)	 : (5)Here we denote by K the Killing form of a Lie algebra gcorresponding to a Lie group G.If we �x A-gauge we have G=A gauge symme-try. Then we add random gauge transformations toSchramm{Loewner evolution [10] similar to the case ofWZNW-models [23]. Denote by tai (~tbi ) the generatorsof g-representation (a-representation) corresponding tothe primary �eld �i.Now we need to consider the evolution of SLE tracet from t to t+ dt. First factor in the right-hand-side ofeq. (4) gives us �2hiw2i �@wi@zi �hi :We denote by Gi the generator of in�nitesimal trans-formation of primary �eld �i:d�i(wi) = Gi�i(wi). Wenormalize additional (dim g)-dimensional Brownian mo-tion as E �d�a d�b� = K(ta; tb)dt. We also introducethe parameter � , which is the variance of this stochasticprocess. The generator of �eld transformation is equaltoGi = �2dtwi �p�d�t� @wi + p�wi Xa:K(ta;~tb)=0 (d�atai ) :(6)

So we have �xed A-gauge by allowing random walk onlyin direction orthogonal to subalgebra a.The di�erential of F should be zero due to martingalecondition. Ito formula is used to calculate the di�eren-tial [24]. We need to include second order terms in Gisince they contain squares of Brownian motion di�eren-tials d�t; d�a with the expectation values proportionalto dt (E [d�2t ] = dt):dFHt = "2NYi=1�@wi@zi �hi#�� "� 2NXi=1 2hidtw2i + 2NXi=1 Gi + 12Xi;j GiGj!#FH = 0: (7)Substituting de�nition (6) we get�� 2L�2 + 12�L2�1 + �2 ���Xa J a�1J a�1 �Xb ~J b�1 ~J b�1��FH = 0; (8)with L�n =Xi � (n� 1)hi(wi � z)n � @wi(wi � z)n�1� ;J a�n = �Xi tai(wi � z)n ; ~J b�n = �Xi ~tbi(wi � z)n :This equation is equivalent to the following algebraiccondition on the boundary state '(0) j0i:h0 j'(1)�1(w1) : : : �2N (w2N )�� 2L�2 + 12�L2�1 + 12� ��� dimgXa=1 Ja�1Ja�1 � dimaXb=1 ~Jb�1~Jb�1��'(0)j0i = 0: (9)Since the set f�ig consists of arbitrary primary �elds weconclude thatj � = �� 2L�2 + 12�L2�1 + 12� ��� dimgXa=1 Ja�1Ja�1 � dimaXb=1 ~Jb�1~Jb�1��'(0)j0� (10)�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 1 { 2 2012



SLE martingales in coset conformal �eld theory 95is a null-state. Now we act on  by raising operators toget equations on �; � . Since in a coset theory commuta-tion relations of full chiral algebra areLn = Lgn � Lan;hLgn; Jami = �mJan+m;hLgn; ~Jbmi = �m~Jbn+m;hLgn; Lmi = [Lgn; Lgm]� [Lgn; Lam] == (n�m)Lm+n + c12 (n3 � n)�m+n;0; (11)
it is more convenient to act with Lg2 and �Lg1�2. Apply-ing Lg2 we getLg2 = �� 8L0 � c+ 3�L0 ++ 12�(k dimg� xek dima)�'(�;�) = 0:We use L0'(�;�) = h(�;�)'(�;�), with the conformalweight h(�;�) = (�; �+ 2�)2(k + h_g) � (�; � + 2�a)2(kxe + h_a) and the cen-tral charge c = k dimgk + h_g � xek dimaxek + h_a . This leads to therelation on �; � :(3�� 8)h(�;�) � c+ �(k dim g� xek dima) = 0: (12)The second relation appears as a result of the Lg1 -action:�12h(�;�) + 2�h(�;�)(2h(�;�) + 1) + �(C� � ~C�) = 0;(13)where C� = (�; � + 2�) and ~C� = (�; � + 2�a) are theeigenvalues of the quadratic Casimir operators Pa tataandPb ~tb~tb of Lie algebras g and a. Relations (12), (13)are the necessary conditions for CFT correlation func-tions to be SLE martingales.From eqs. (12), (13) we immediately get �; � for eachpair (�; �) of g and a-weights.Examples. As an example consider ŝu(2)Nû(1)N -cosetmodels which are equivalent to ZN -parafermions. Thecentral charge is c = 3NN + 2 � 1 = 2N � 2N + 2 . Conformalweights of primary �elds with Dynkin indeces (k; l) areh(k;l) = k(k + 2)4(N + 2) � l24N .Case N = 2, c = 1=2 corresponds to the Ising model,we have two non-trivial primary �elds with conformalweights h(2;0) = 1=2; h(1;1) = 1=16. Substituting the�eld '(2;0) into eq. (12, 13) we get: 3� � 9 + 4� = 0;�3 + � + 4� = 0. The solution is � = 3; � = 0. For

the �eld '(1;1) the relations are 3� � 16 + 64� = 0,�64 + 9� + 64� = 0, � = 16=3; � = 0. So we haveno additional motion for the Ising model and two pos-sible values for SLE parameter � coinciding with thewell-known results [5].For N = 3 the parafermionic model central chargeis c = 4=5. Conformal weights are h(0;0) = 0,h(0;2) = h(0;�2) = 2=3 mod 1, h(2;0) = 2=5, h(2;2) == h(2;�2) = 1=15. The corresponding values of �; �are: (208=25; 242=225), (10=3; 0), (80=19, 14=171). Asit was mentioned in [11] the �eld '(2;0) with the con-formal weight h(2;0) = 2=5 constitutes the Z3-singlet, soan additional random walk does not appear and � = 0.The form of equations (9) is similar to that of [11], butthe normalization of � di�ers.It is easy to see that for the ŝu(2)N � ŝu(2)1ŝu(2)N+1 -cosetrealization of minimal unitary models with c = 3NN + 2 ++ 1 � 3(N + 1)N + 3 = 1 � 6(N + 2)(N + 3) the system ofequations (12, 13) is always consistent for � = 0 and weget a standard connection between the SLE-parameter� and the central charge c = (6� �)(3�� 8)2� .3. Conclusion and outlook. In [23] a connectionbetween WZNW-models and Schramm{Loewner evolu-tion with additional Brownian motion on group manifoldwas established. The authors also stated a problem of apossible connection of SLE parameters for martingalesin WZNW, coset and minimal models. In present letterwe used the method proposed in [24] to obtain necessaryconditions on SLE martingales. This method allowed usto compare our results with parafermionic results pre-sented in [11, 25].The coset structure of minimal models is manifest in�eld theory perturbed by an external magnetic �eld [12{14]. This theory is supported by experimental data [15].Relations between correlation functions in coset theoryand SLE observables can be a starting point in studiesof domain walls in lattice models away from the criticalpoint.Massive perturbations of G=A-coset theory are real-ized as an a�ne Toda �eld theory and are classi�ed bysimple roots of the Lie algebra g. A�ne Toda �eld the-ory can be obtained by adding perturbation term to theaction (5):Spert = SG=A(; �)� k�2� Z K(T; �1 �T ); (14)where T; �T 2 g are specially chosen Lie algebra elements[26{28]. The perturbation leads to an insertion of cer-tain primary �eld in all the correlation functions [14].�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 1 { 2 2012
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