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Scharmm-Loewner evolution (SLE) and conformal field theory (CFT) are popular and widely used instru-
ments to study critical behavior of two-dimensional models, but they use different objects. While SLE has
natural connection with lattice models and is suitable for strict proofs, it lacks computational and predictive
power of conformal field theory. To provide a way for the concurrent use of SLE and CFT we consider CFT
correlation functions which are martingales with respect to SLE. We establish connection between parameters
of Schramm-Loewner evolution on coset space and algebraic data of coset conformal field theory. Then we

check the consistency of our approach with the behaviour of parafermionic and minimal models. Coset models
are connected with off-critical massive field theories and we discuss implications for SLE.

1. Introduction. Schramm-Loewner evolution [1]
is a stochastic process satisfying stochastic differential
eq. (1). A solution of eq. (1) can be seen as probability
measure on random curves (called SLE traces). SLE is
useful for the study of critical behavior [2, 3], since for
many lattice models the convergence of domain walls to
SLE traces can be proved [4, 5]. Practical computations
with SLE rely on Ito calculus while proofs use discrete
complex analysis [6].

Conformal field theory [7] is formulated in terms of
families of quantum fields which usually has no direct
microscopic interpretation. On the other hand CFT has
efficient computational tools such as Virasoro symmetry,
Knizhnik-Zamolodchikov equations, fusion algebra etc
and provides numerous predictions, such as celebrated
Cardy formula [8, 9] which gives crossing probability for
critical percolation.

Combination of these two approaches is immensely
powerful, so it is important to find objects which can be
studied from both points of view.

We present a new class of such observables in coset
conformal field theory — correlation functions which are
martingales with respect to Schramm-Loewner evolu-
tion with additional Brownian motion on factor-space
of Lie group G by subgroup A [10]. We derive relations
connecting SLE and CFT parameters. We then check
the consistency of these results with the earlier results
for parafermionic observables [11].

All minimal unitary models can be obtained by
coset construction. Coset structure leads to specific off-
critical behavior. Massive excitations of coset CFTs are
given by affine Toda field theories [12-14]. Recent ex-
perimental study confirming this result attracted a lot

1e-mail: anton.nazarov@hep.phys.spbu.ru

Mucema B ARIT® Tom 96 BeIm.1-2 2012

of attention [15]. In conclusion we discuss possible con-
nections of massive CFT perturbations with off-critical
SLEs (containing additional drift term [16]).

2. Martingale conditions. Consider some criti-
cal lattice model on the upper half-plane H with the cut
along a critical interface 7; (domain wall up to some
length t). We denote this slit domain by Hy = H \ ;.
Assume that ; satisfies restriction property and is con-
formally invariant [2]. Then conformal map g; : Hy — H
satisfies stochastic differential equation [1]:

agt(z) _ 2
ot 9¢(2) — VK&
where &; is the Brownian motion. The dynamic of the
tip z; of critical curve 7 (tip of SLE trace) is given by

the law z; = g; * (/K&
For us it is convenient to use the map w;(z) =
= g:(z) — v/k&:, so the eq. (1) becomes

dwt = 2dt/wt — \/Edft (2)

(1)

Consider N-point correlation function of boundary
conformal field theory with boundary condition chang-
ing operators sitting at the tip of SLE trace and at the
infinity:

F({zi, 2} )i = (@(2e) b1 (21, 21) - - b (20, Zn)p(00))
(3)

where ¢; are bulk primary fields with conformal weights
h; and ¢(z;) is boundary condition changing operator.
Let g be a (semisimple) Lie algebra of a Lie group
G and a — Lie algebra of a subgroup A C G. Denote by
z. embedding index for a — g.
Primary fields in coset models are labeled by pairs
(A, m) of weights for g- and a-representations. For each A
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the set of possible Welghts 71 includes those which appear
in the decomposition Lg“ @, H, 2®Lg (m), (Some pairs
are equivalent, see [17, 18].) We assume that boundary
field ¢ is also primary and is labeled by weights (u, V).
We use the conformal map w(z) : H\ v — H to
rewrite expression (3) in the whole upper half plane:

Fllzizih)m =
11|75 ]"H[‘r"gg")]mﬂ{wi,wi})ﬂ. (4)

We can extend the definition of F to the whole plane
by doubling the number of fields ¢; [19, 20] and by con-
sidering w;, w; as independent variables. To simplify
notations we will write f({wz}fivl)

G/ A-coset conformal field theory can be realized as
a WZNW-model (with gauge group G) interacting with
pure gauge fields of gauge group A C G [21, 22]. The
action is written in terms of fields v : C — G and
a,a:C— A:

k _ _
Soralne) = — o / P K(y 10y, 0,7) -

ko 107 [-107 107 ]\ s
247r/B€”’°’C(7 az’[” ayi ! ayk| ) LYt

d2z {K(a,y™0v) - Kla, (07)y ]+
—K(a,a)}. (5)

Here we denote by K the Killing form of a Lie algebra g
corresponding to a Lie group G.

If we fix A-gauge we have G/A gauge symme-
try. Then we add random gauge transformations to
Schramm-Loewner evolution [10] similar to the case of
WZNW-models [23]. Denote by t¢ (#?) the generators
of g-representation (a-representation) corresponding to
the primary field ¢;.

Now we need to consider the evolution of SLE trace
v from ¢ to t + dt. First factor in the right-hand-side of

eq. (4) gives us
2hi (Gwi\™
w? \ 0z )

We denote by G; the generator of infinitesimal trans-
formation of primary field ¢;:d¢;(w;) = Gidi(w;). We
normalize additional (dim g)-dimensional Brownian mo-
tion as E[df* d6°] = K(t%,t°)dt. We also introduce
the parameter 7, which is the variance of this stochastic
process. The generator of field transformation is equal
to

gi:<2—dt—fdgt>aw,.+§ >

¢ a:K(te,t%)=0

Lk
47

+’C(a,7’ldv)

(d6°42) .

(6)

So we have fixed A-gauge by allowing random walk only
in direction orthogonal to subalgebra a.

The differential of F should be zero due to martingale
condition. Ito formula is used to calculate the differen-
tial [24]. We need to include second order terms in G;
since they contain squares of Brownian motion differen-
tials d¢;, d#* with the expectation values proportional
to dt (E[d¢?] = dt):

2N 6’11}1' hi
dfm:[H<aZi> ]X
x [—Z Zhidt (Z Gi+ Zgigjﬂ Fie=0.(7)

l

Substituting definition (6) we get

1 T
[—252 + §Hﬁz_1 +5 %

. (Z CEEEDY j31j31>]7-'ﬂ —0, ()

with

> <Ezz:i§ii )

%

This equation is equivalent to the following algebraic
condition on the boundary state ¢(0) |0):

(0p(00)¢r (wr) .-

1 1
|:— 2L,2 + 5[4}[/271 + 5’7’ X

P2 (wan)

dim g dima~ _
x ( ol - > JLJEl)]
a=1 b=1
¢(0)[0) = 0. (9)

Since the set {¢;} consists of arbitrary primary fields we
conclude that

1 1
) = [— 2L_» + 5;«ULZ_l + 57 X

dim g dim @

X ( a; Je,Je, — Z Jb,Jb )] 0)[0) (10
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is a null-state. Now we act on ¢ by raising operators to
get equations on &, 7. Since in a coset theory commuta-
tion relations of full chiral algebra are

L,=L%-19
L8, 7] = —mTg
[L%,j,';} =-mJt ., (11)

[L%,Lm] = [8,L8) - L8,09) =

3

=(m—m)Lyin+ %(n - n)5m+n,07

2
it is more convenient to act with Lg and (Lg ) . Apply-
ing Lg we get

L3y = [—SLO —c+3kLo +
1 . .
+ ET(’C dimg — z.k dim u)] (uw) = 0.

We use Low(u,) = h(uw)P(up), With the conformal

. (ks +2p)  (v,v + 2pa)
ht h(, ) = — d th -
weight h, ,) 20k T h\é) 2(kws + hY) and the cen
kdimg zc.kdima .
1 ch = - . This 1 h
tral charge ¢ T hé 2ok + Ay is leads to the

relation on &, 7:
(36 = 8)h(uy —c+ 7(kdimg — zckdima) = 0. (12)

The second relation appears as a result of the Lg -action:

_12h(u,'/) + 2Hh(u,u) (Zh(u,v) +1) + T(Cu -C,) =0,
(13)

where C,, = (u, p + 2p) and C,, = (v,v + 2pq) are the
eigenvalues of the quadratic Casimir operators ) t*t®
and )", #°¢° of Lie algebras g and a. Relations (12), (13)
are the necessary conditions for CFT correlation func-
tions to be SLE martingales.

From egs. (12), (13) we immediately get x, 7 for each
pair (u,v) of g and a-weights.

SAU(2)N

(1
models which are equivalent to Z N—parafermioﬁs. The
. 3N 2N —2
central charge is ¢ = Ni2 TN 2
weights of primary fields with Dynkin indeces (k,[) are
k(k+2) 12
4(N+2) 4N’

Case N = 2, ¢ = 1/2 corresponds to the Ising model,
we have two non-trivial primary fields with conformal
weights h(s ) = 1/2,h1,1) = 1/16. Substituting the
field ¢(2,0) into eq. (12, 13) we get: 3x — 9 + 47 = 0;
—3+ Kk + 47 = 0. The solution is k = 3,7 = 0. For

-coset

Examples. As an example consider

Conformal

hkgy =
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the field ¢(;,1) the relations are 3x — 16 + 647 = 0,
—64 4+ 9% + 647 = 0, k = 16/3,7 = 0. So we have
no additional motion for the Ising model and two pos-
sible values for SLE parameter x coinciding with the
well-known results [5].

For N = 3 the parafermionic model central charge

is ¢ = 4/5. Conformal weights are hpo = 0,
h(0,2) = h(0,72) = 2/3 mod ]., h(z,o) = 2/5, h(2,2) =
= h(3,_2y = 1/15. The corresponding values of x, T

are: (208/25,242/225), (10/3,0), (80/19, 14/171). As
it was mentioned in [11] the field ¢(5 ) with the con-
formal weight h(30) = 2/5 constitutes the Z3-singlet, so
an additional random walk does not appear and 7 = 0.
The form of equations (9) is similar to that of [11], but

the normalization of 7 differs. R )
su(2)n & su(2);

It is easy to see that for the = -coset
Su(2) N1
realization of minimal unitary models with ¢ = ——— +
( ) N +2
3(N+1 6
+1—- —— =1— —————— the system of
N +3 (N +2)(N +3) y

equations (12, 13) is always consistent for 7 = 0 and we

get a standard connection between the SLE-parameter

x and the central charge ¢ = w

3. Conclusion and outlook. Izn,‘i [23] a connection
between WZNW-models and Schramm-Loewner evolu-
tion with additional Brownian motion on group manifold
was established. The authors also stated a problem of a
possible connection of SLE parameters for martingales
in WZNW, coset and minimal models. In present letter
we used the method proposed in [24] to obtain necessary
conditions on SLE martingales. This method allowed us
to compare our results with parafermionic results pre-
sented in [11, 25].

The coset structure of minimal models is manifest in
field theory perturbed by an external magnetic field [12—
14]. This theory is supported by experimental data [15].
Relations between correlation functions in coset theory
and SLE observables can be a starting point in studies
of domain walls in lattice models away from the critical
point.

Massive perturbations of G /A-coset theory are real-
ized as an affine Toda field theory and are classified by
simple roots of the Lie algebra g. Affine Toda field the-
ory can be obtained by adding perturbation term to the
action (5):

kA e
Spert = SG/A('% Ot) - % /\K(’YTV-Y lT)v (14)
where T, T € g are specially chosen Lie algebra elements

[26-28]. The perturbation leads to an insertion of cer-
tain primary field in all the correlation functions [14].
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It was shown that massive off-critical SLEs have addi-
tional drift term in driving Brownian motion [16, 29].
The question is whether the interaction of the perturb-
ing primary field with the 7-term of the eq. (8) leads to
the same contribution as the addition of a massive drift
to SLE.

In the forthcoming studies we will address this ques-
tion and compare massive perturbations of coset models
with the numerical studies of domain walls in the Ising
model perturbed by a random Gaussian external field
[30].
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