Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-121
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 96 (2012) | ISSUE 1 | PAGE 59
LDA+DMFT study of magnetic transition and metallization in CoO under pressure
Abstract
In this work we report results of magnetic and spectral properties calculation for paramagnetic phase of CoO at ambient and high pressures performed within the LDA+DMFT method combining local density approximation (LDA) with dynamical mean-field theory (DMFT). From our results CoO at ambient pressure is a charge transfer insulator in the high-spin t52ge2g configuration. The energy gap is continuously decreased, and finally a transition into metallic state occurs with the increase of pressure that is consistent with experimental behavior of electrical resistivity. Notably, the metal-insulator transition in CoO is found to be accompanied by the high-spin to low-spin (HS-LS) transition in agreement with XES data. The metal-insulator transition is orbital selective in the t2g states of cobalt only, whereas the eg states become metallic after the spin transition at higher pressures.