
Pis'ma v ZhETF, vol. 96, iss. 1, pp. 64 { 67 c 2012 July 10Analytical �ve-loop expressions for the renormalization group QED�-function in di�erent renormalization schemesA.L.Kataev, S. A. LarinInstitute for Nuclear Research of the RAS, 117312 Moscow, RussiaSubmitted 14 May 2012We obtain analytical �ve-loop results for the renormalization group �-function of Quantum Electrodynam-ics with the single lepton in di�erent renormalization schemes. The theoretical consequences of the resultsobtained are discussed.The concept of the �-function, which depends onthe choice of the renormalization scheme, is the cor-nerstone of the Quantum Field Theory renormalizationgroup approach, developed in the works of Refs. [1{3].In QED the study of the perturbative expansion of the�-function is of special interest. Indeed, it governs theenergy-dependence of the constant � = e2=(4�), whichde�nes the coupling of photons with leptons. In thiswork we will obtain the �ve-loop analytical expressionsfor the renormalization group QED �-function of theelectron, neglecting the contributions of leptons withhigher masses, namely the contributions of muons andtau-leptons.We will start with the expression for the �-functionin the variant of the minimal subtraction scheme [4],namely the MS-scheme [5]:�MS(��) = �2 @(��=�)@�2 =Xi�1 ��i� ����i+1; (1)where �� is the renormalizedMS-scheme QED couplingconstant and �2 is theMS-scale parameter. At the three-loop level the scheme-dependent coe�cient ��3 was inde-pendently evaluated analytically in [6, 7]. The four-loopcoe�cient ��4 was obtained as the result of the project,started in Ref. [8] and completed in Ref. [9]. The QEDresult of Ref. [9] was con�rmed after taking the QEDlimit of the analytically evaluated in Ref. [10] 4-loop cor-rection to the MS-scheme �-function of the SU(Nc)colour gauge model.To get the �ve-loop expression for the coe�cient ��5we use the derived in Ref. [11] renormalization-groupexpression, which has the following form:��5 = ��b5 � 3�b1�a4 � 2�b2�a3 � �b3�a2 � �b1�a22; (2)where �al and �bl enter into the expressions for the l-loopcontributions to the photon vacuum polarization func-tions with 1 � l � 5. These contributions are de�nedas

��l(x) = [�al +�bl ln(x) + �cl ln2(x) ++ �dl ln3(x) + �el ln4(x)]� ����l�1; (3)where x = Q2=�2 and Q2 is the Euclidean momentumtransfer. It is possible to show, that for l � 2 �cl = 0,�dl = 0, �el = 0, for l � 3 �dl = 0 and �el = 0, whilefor l = 4 �e4 = 0. In general �cl, �dl, �el are expressedthrough the products of lower order coe�cients �bi viathe corresponding renormalization group relations (seeRefs. [12, 11]). For 1 � l � 3 the coe�cients �ai and �biare de�ned by the results of Ref. [12] and read �a1 = 5=9,�a2 = 55=48� �3, �a3 = �1247=648� (35=72)�3+(5=2)�5,�b1 = �1=3, �b2 = �1=4, �b3 = 47=96 � �3=3, whilethe expression for �a4 = 1075825=373248� (13=96)�4 ++ (13051=2592)�3� (5=3)�23 + (45=32)�5� (35=4)�7 wasevaluated in Ref. [13]. In order to get ��5 from Eq. (2)we should �x the analytical expression for �b5 in the r.h.s.of Eq. (2). It is composed of the sum of three contribu-tions �b5 = �b5[nlbl]+�b5[3; lbl]+�b5[2; lbl]. The �rst term in�b5 is �xed by the leading logarithmic term of the sum of�ve-loop photon vacuum polarization graphs, which con-tain the electron loop with two external vertexes. Thesecond term �b5[3; lbl] comes from the logarithmic con-tribution to �ve-loop photon propagator diagrams withtwo one-loop light-by-light scattering type sub-graphs,connected by a photon line with an electron loop inser-tion and two undressed photon propagators. The thirdterm �b5[2; lbl] arises from the logarithmic contributionto �ve-loop photon propagator diagrams with one-loopand two-loop light-by-light scattering type sub-graphs,connected by three undressed photon propagators.The �rst contribution into �b5 can be de�ned fromthe QED limit of the result of Ref. [14] with one activelepton and reads�b5[nlbl] = � 4093671492992 + 155352592 �3 � �23 + 2512�5 � 354 �7:(4)64 �¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 1 { 2 2012



Analytical �ve-loop expressions for the renormalization : : : 65The term �b5[3; lbl] is �xed by us from the QED limitof the depending on the number of fermions analyticalexpression for the order �4s singlet QCD contribution tothe cross-section for electron-positron annihilation intohadrons, published in Ref. [15]. It has the following form�b5[3; lbl] = 149108 � 136 �3 � 23�23 + 53�5: (5)The term �b5[2; lbl] is obtained from the QED limitof the CF�4s singlet QCD contribution to the cross-section for electron-positron annihilation into hadrons,presented in the subsequent works of Refs. [16, 17], withCF being the quadratic Casimir operator of the SU(Nc)colour gauge group. This term is�b5[2; lbl] = 1312 + 43�3 � 103 �5: (6)Substituting the results from Eqs. (4), (5), and (6)into the r.h.s. of Eq. (2) we get the analytical expressionfor the �ve-loop approximation of the MS-scheme QED�-function with a single lepton:�MS(��) = �2 @(��=�)@�2 =Xi�1 ��i� ����i+1 == 13� ����2 + 14� ����3 �� 31288� ����4 �� 278531104 + 1336�3�� ����5 ++��195067497664�1396�4�2596�3+21596 �5�� ����6 +O(��7); (7)which contain the contributions of the Riemann �-functions, de�ned as �k = P1n=1(1=n)k. Let us remindthat scheme-dependent coe�cients of the �-function donot depend on the concrete realization of the minimalsubtraction scheme (see, e.g., [7]). Notice the appear-ance of the �4-term in the expression for ��5, which didnot manifest itself in the lower order coe�cients. Thisfeature was already observed in Ref. [18] as the resultof analytical calculations of the cubic in the number ofleptons �ve-loop terms of the the QED �MS -function,which did not contain the cubic in the number of lep-tons light-by-light-type terms. Comparing our resultof Eq. (7) with the expression from Ref. [18], we con-clude that the addition of the 5-loop light-by-light-typecontributions changes the coe�cient and sign of the �4-contribution in the overall expression for ��5 given inEq. (7). This happens due to taking into account in thesecond term of Eq. (2) the light-by-light-type contribu-tion into the constant term �a4. Another intriguing ob-servation is the cancellation in Eq. (7) of the �7 and �23

transcendentalities, which contribute to the �rst term inEq. (2), namely the �b5[nlbl]-term (see Eq. (4)).Let us now transform Eq. (2) from the MS- to theon-shell scheme using the following equation�OS(�) =Xi�1 �i����i+1 = �MS [��(�)]=@��(�)@� ; (8)where �2 = m2, m is the electron pole mass, � is theQED coupling constant, de�ned in the on-shell schemeand��(�)=��1 + g2����2 + g3����3 + g4����4 +O(�5)�:(9)The coe�cients g2 = 15=16, g3 = �4867=5184 ++ (23=72)�2 � (1=3)�2ln2 + (11=96)�3 were evaluatedin Ref. [19], whileg4 = 14327767=9331200+ (8791=3240)�2++(204631=259200)�4�(175949=4800)�3+ (1=24)�2�3++(9887=480)�5� (595=108)�2ln2� (106=675)�4ln2++(6121=2160)�2ln2 2� (32=135)�2ln3 2��(6121=2160)ln4 2 + (32=225)ln5 2��(6121=90)a4� (256=15)a5with a4 and a5 de�ned as ak = Lik[1=2] =P1n=1(1=2n)kwas obtained in Ref. [13].Using these results in the transformation relations ofEqs. (9) and (8) we get�OS(�) = m2 @(�=�)@m2 =Xi�1 �i����i+1 == 13����2 + 14����3 � 121288����4 ++� 556110368 � 2318�2 + 43�2ln2� 716�3�����5 ++ �� 2320699337324800 + 61212160ln42� 32225ln52�� 205021259200�4 + 106675�4ln2 + 612190 Li4(1=2) ++ 25615 Li5(1=2)� 3619912960�2 + 15127 �2ln2�� 61212160�2ln22 + 32135�2ln32�� 124�2�3 + 3491239600 �3 � 2203120 �5�����6 +O(�7): (10)The third coe�cient coincides with the one, originallycalculated in Ref. [20]. The agreement between analyt-ical results for ��3 and �3-coe�cients was �rst demon-strated in Ref. [7]. The expression for the four-loop co-e�cient �4 is in agreement with the result of Ref. [19].5 �¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 1 { 2 2012



66 A.L.Kataev, S. A. LarinThe �ve-loop coe�cient �5 is new. Note, that both �4-and �5-terms contain typical to the on-shell renormal-ization procedure contributions, which are proportionalto ln2 and �2 = �2=6. However, at present we are unableto rewrite the proportional to �2 contributions into �5through the �-functions of even arguments. Indeed, the�4-contributions to g4 may be decomposed into the sumof �4- and �22 -terms with unknown to us coe�cients.In order to get the �ve-loop expression for the QEDGell-Mann{Low	(~�)-function, which coincides with theQED �-function in the momentum (MOM) subtractionsscheme (for the detailed explanation of this statementat the four-loop level see Refs. [8, 9]) we supplementthe general transformation relation between the �OS(�)-function and the 	-function, derived in Ref. [11] with theexplicit results for the on-shell scheme analogs of the co-e�cients �a3 and �a4 in Eq. (3), which are known from theresults of Refs. [19, 13] respectively. The obtained resultreads 	(~�) = �2 @(~�=�)@�2 =Xi�1 	i� ~���i+1 == 13� ~���2 + 14� ~���3 +��101288 + 13�3�� ~���4 ++� 93128 + 13�3 � 53�5�� ~���5 ++��12238755296 � 7924�3 + �23 � 18572 �5 + 354 �7���� ~���6 +O(~�7): (11)We checked that the identical result is obtained fromthe �ve-loop expression for the �MS(��)-function aftertransforming it into the MOM-scheme. The expressionsfor 	3 and 	4 coincide with the results, originally ob-tained in Refs. [21, 9]. The expression for 	5 is new. Onthe contrary to the �ve-loop MS- and on-shell schemecoe�cients ��5 and �5 it does not contain �-functionsof even arguments. However, the contributions of �7-and �23 -terms manifest themselves in 	5 only. They arerelated to the similar scheme-independent [13] contribu-tions into the non-logarithmic four-loop coe�cients �a4and a4 of the renormalized photon vacuum polarizationfunction in the MS- and on-shell scheme, as given inRef. [13].For the completeness we present the �ve-loop expres-sion for the perturbative quenched QED contributionto the QED �-functions. It was originally obtained inRef. [22] and published later in Ref. [14] after additionaltheoretical cross-checks proposed in Ref. [23]. The resultreads

F1(��) = 13���� �+ 14���� �2 � 132���� �3 �� 23128���� �4 +�41576144 + 18�3����� �5 +O(�6�); (12)where �� is the corresponding expansion parameter,while the coe�cients of F1-function do not depend fromthe renormalization scheme.At the three- and four-loop level the related expres-sions were obtained in Refs.[24, 9]. The 4-loop result wasindependently con�rmed later on in the work of Ref. [25].In the numerical form the �ve-loop perturbative se-ries we are interested in read�MS(��) = 0:3333� ����2 + 0:25� ����3 �� 0:1076� ����4 � 0:5236� ����5 + 1:471� ����6; (13)�OS(�) = 0:3333����2 + 0:25����3 �� 0:4201����4 � 0:5712����5 � 0:3462����6; (14)	(~�) = 0:3333� ~���2 + 0:25� ~���3 ++ 0:04999� ~���4 � 0:6010� ~���5 + 1:434� ����6; (15)F1(��) = 0:3333���� �+ 0:25���� �2 �� 0:03125���� �3�0:1797���� �4 + 0:8268���� �5:(16)Let us discuss the structure of these perturbative se-ries. From the theoretical arguments, presented in thework of Ref. [26] one may expect that the �-functionsare expanded into the sign-alternating asymptotic per-turbative series with fast growing coe�cients. And in-deed, this feature is true in the case of the �-functionof the g�4-theory, which is known in the MS-schemeup to the �ve-loop [27, 28]. In the case of QED theasymptotic estimates of Refs. [29, 30], analogous to Li-patov's ones for the g�4-theory [26], indicate that the as-ymptotic structure of QED perturbative series is morecomplicated than in the g�4-theory. Indeed, the asymp-totic of Refs. [29, 30] were obtained only for the gauge-invariant subclasses of diagrams with �xed number offermion loops. Moreover, the indication of the sign-alternating factorial growth of the perturbative coe�-cients of the F1-function, given in Ref. [29], does notagree with the concrete behavior of the �ve-loop pertur-bative series, presented in Eq. (16). Besides, as it is dis-cussed in Refs. [29, 30], in the case of complete QED the�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 1 { 2 2012



Analytical �ve-loop expressions for the renormalization : : : 67strong cancellations between coe�cients of sub-sets ofdiagrams with di�erent �xed numbers of fermion loopsis expected. This e�ect may manifest itself in the di�er-ences of sign structures of the �ve-loop approximationsfor �MS(��), �OS(�), and 	(~�) (compare Eq. (13) withEqs. (14) and (15)).It is also interesting to note, that taking into ac-count the calculated by us �ve-loop correction to 	(~�)con�rms the con�dence in the validity of the criterionO � 	(~�) < ~�=�, derived by Schwinger [31] and Kras-nikov [32] (see Ref. [33] as well). Note also, that thetheoretical analysis of the behavior of the perturbativeseries for the Gell-Mann{Low function 	(~�), preformedin Ref. [34], which at large ~� indicates the validity of itslinear behavior, supports the mentioned above identity,derived in Refs. [31{33].However, we think that the the similar linear behav-ior, obtained in Ref. [35] for the QED �-function in theon-shell scheme for the case when the expansion parame-ter is going to in�nity should be reconsidered. Indeed,analyzing the behavior of the perturbative series for the�OS(�)-function from Eq. (14) at the three-, four-, and�ve-loop levels, we observe the appearances of the rig-orously speaking unphysical ultraviolet �xed points at�=� � 1:2, �=� � 0:8, and �=� � 0:7 respectively.The appearances of these zeros may a�ect the exact as-ymptotic behavior of the QED �-function in the on-shellscheme, considered in Ref. [35].This work was done using the Computational clus-ter of the Theory Division of the Institute for NuclearResearch of the Russian Academy of Sciences and is sup-ported by the Grant #NS-5590.2012.2. The work of oneof us (ALK) was also supported in part by the RFBRGrants #11-01-00182 and 11-02-00112.After the acceptance of this work for publication theanalytical expression for the 5-loop QED corrections tothe �AS(�) and 	-function with N-numbers of identicalcharges leptons became known [36].1. E. C.G. Stueckelberg and A. Petermann, Helv. Phys.Acta 26, 499 (1953).2. M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300(1954).3. N.N. Bogolyubov and D.V. Shirkov, Nuovo Cim. 3, 845(1956).4. G. 't Hooft, Nucl. Phys. B 61, 455 (1973).5. W.A. Bardeen, A. J. Buras, D.W. Duke, and T. Muta,Phys. Rev. D 18, 3998 (1978).6. A.A. Vladimirov, Theor. Math. Phys. 43, 417 (1980)[Teor. Mat. Fiz. 43, 210 (1980)].7. K.G. Chetyrkin, A. L. Kataev, and F.V. Tkachov, Nucl.Phys. B 174, 345 (1980).8. S.G. Gorishny, A.L. Kataev, and S.A. Larin, Phys.Lett. B 194, 429 (1987).
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