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We obtain analytical five-loop results for the renormalization group S-function of Quantum Electrodynam-
ics with the single lepton in different renormalization schemes. The theoretical consequences of the results

obtained are discussed.

The concept of the (-function, which depends on
the choice of the renormalization scheme, is the cor-
nerstone of the Quantum Field Theory renormalization
group approach, developed in the works of Refs.[1-3].
In QED the study of the perturbative expansion of the
(B-function is of special interest. Indeed, it governs the
energy-dependence of the constant o = e%/(4n), which
defines the coupling of photons with leptons. In this
work we will obtain the five-loop analytical expressions
for the renormalization group QED A-function of the
electron, neglecting the contributions of leptons with
higher masses, namely the contributions of muons and
tau-leptons.

We will start with the expression for the #-function
in the variant of the minimal subtraction scheme [4],
namely the M S-scheme [5]:
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where @ is the renormalized M S-scheme QED coupling
constant and p? is the M S-scale parameter. At the three
-loop level the scheme-dependent coefficient 33 was inde-
pendently evaluated analytically in [6,7]. The four-loop
coefficient 34 was obtained as the result of the project,
started in Ref. [8] and completed in Ref. [9]. The QED
result of Ref. [9] was confirmed after taking the QED
limit of the analytically evaluated in Ref. [10] 4-loop cor-
rection to the M S-scheme (-function of the SU(N.)
colour gauge model.

To get the five-loop expression for the coefficient 35
we use the derived in Ref. [11] renormalization-group
expression, which has the following form:
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where @, and b; enter into the expressions for the I-loop
contributions to the photon vacuum polarization func-
tions with 1 < [ < 5. These contributions are defined
as
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where z = Q%/p? and Q? is the Euclidean momentum
transfer. It is possible to show, that for [ < 2 ¢ = 0,
d =0, =0,forl <3d =0 andég = 0, while
for | = 4 e84 = 0. In general ¢, d;, & are expressed
through the products of lower order coefficients b; via
the corresponding renormalization group relations (see
Refs. [12, 11]). For 1 < I < 3 the coefficients a@; and b;
are defined by the results of Ref. [12] and read a; = 5/9,
ay = 55/48 — (3, az = —1247/648 — (35/72)(5+ (5/2)(5,
by = —1/3, by = —1/4, by = 47/96 — (3/3, while
the expression for a4 = 1075825/373248 — (13/96)Cs +
+ (13051/2592)¢3 — (5/3)¢2 + (45/32)¢s — (35/4)(r was
evaluated in Ref.[13]. In order to get 35 from Eq.(2)
we should fix the analytical expression for by in the r.h.s.
of Eq. (2). It is composed of the sum of three contribu-
tions bs = bs[nlbl]+bs[3, Ibl]+bs[2, Ibl]. The first term in
bs is fixed by the leading logarithmic term of the sum of
five-loop photon vacuum polarization graphs, which con-
tain the electron loop with two external vertexes. The
second term bs[3,1bl] comes from the logarithmic con-
tribution to five-loop photon propagator diagrams with
two one-loop light-by-light scattering type sub-graphs,
connected by a photon line with an electron loop inser-
tion and two undressed photon propagators. The third
term bs[2,[bl] arises from the logarithmic contribution
to five-loop photon propagator diagrams with one-loop
and two-loop light-by-light scattering type sub-graphs,
connected by three undressed photon propagators.

The first contribution into bs; can be defined from
the QED limit of the result of Ref.[14] with one active
lepton and reads
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The term bs[3, Ibl] is fixed by us from the QED limit
of the depending on the number of fermions analytical
expression for the order a? singlet QCD contribution to
the cross-section for electron-positron annihilation into
hadrons, published in Ref. [15]. It has the following form

149
= _ —C3 —

108

The term bs[2, 1bl] is obtained from the QED limit
of the Cra} singlet QCD contribution to the cross-
section for electron-positron annihilation into hadrons,
presented in the subsequent works of Refs. [16, 17], with
CF being the quadratic Casimir operator of the SU(N,)
colour gauge group. This term is

bs[3, Ibl] = C§ + ng- (5)
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Substituting the results from Egs. (4), (5), and (6)
into the r.h.s. of Eq. (2) we get the analytical expression
for the five-loop approximation of the M S-scheme QED
[B-function with a single lepton:
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which contain the contributions of the Riemann (-
functions, defined as ¢, = Y. oo, (1/n)*. Let us remind
that scheme-dependent coefficients of the S-function do
not depend on the concrete realization of the minimal
subtraction scheme (see, e.g., [7]). Notice the appear-
ance of the (4-term in the expression for 35, which did
not manifest itself in the lower order coefficients. This
feature was already observed in Ref. [18] as the result
of analytical calculations of the cubic in the number of
leptons five-loop terms of the the QED [z -function,
which did not contain the cubic in the number of lep-
tons light-by-light-type terms. Comparing our result
of Eq.(7) with the expression from Ref.[18], we con-
clude that the addition of the 5-loop light-by-light-type
contributions changes the coefficient and sign of the (4-
contribution in the overall expression for (5 given in
Eq. (7). This happens due to taking into account in the
second term of Eq. (2) the light-by-light-type contribu-

tion into the constant term a4. Another intriguing ob-
servation is the cancellation in Eq. (7) of the (7 and (2

bs(2, 1bl] = = G- (6)
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transcendentalities, which contribute to the first term in
Eq. (2), namely the bs[nlbl]-term (see Eq. (4)).

Let us now transform Eq.(2) from the MS- to the
on-shell scheme using the following equation

fos(a Zﬁz( ) " fala)

= Brrslal@)l/ =52 (8)

where u? = m?, m is the electron pole mass, a is the

QED coupling constant, defined in the on-shell scheme
and

2 3 4
a(a)=a [1 + g (%) +9s (%) + g4 (%) + O(a5)] .
(9)
The coefficients g» = 15/16, g3 = —4867/5184 +
+ (23/72)7% — (1/3)7*In2 + (11/96)(3 were evaluated
in Ref. [19], while
g4 = 14327767/9331200 + (8791/3240) 7%+
+(204631/259200) % — (175949/4800) (3 + (1/24) w2 (s +
+(9887/480) (5 — (595/108)72In2 — (106/675)74In2+
+(6121/2160)7%In? 2 — (32/135)72In® 2—
—(6121/2160)In* 2 + (32/225)In° 2—
—(6121/90)a4 — (256/15)as
with a4 and a; defined as ap = Lig[1/2] = >
was obtained in Ref.[13].

Using these results in the transformation relations of
Egs. (9) and (8) we get
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The third coefficient coincides with the one, originally
calculated in Ref. [20]. The agreement between analyt-
ical results for B3 and Bs-coefficients was first demon-
strated in Ref. [7]. The expression for the four-loop co-
efficient 34 is in agreement with the result of Ref.[19].
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The five-loop coefficient (5 is new. Note, that both (4-
and f(s-terms contain typical to the on-shell renormal-
ization procedure contributions, which are proportional
toIn2 and (» = n%/6. However, at present we are unable
to rewrite the proportional to 72 contributions into s
through the (-functions of even arguments. Indeed, the
m*-contributions to g4 may be decomposed into the sum
of (4- and (2-terms with unknown to us coefficients.

In order to get the five-loop expression for the QED
Gell-Mann-Low ¥ (&)-function, which coincides with the
QED -function in the momentum (MOM) subtractions
scheme (for the detailed explanation of this statement
at the four-loop level see Refs.[8, 9]) we supplement
the general transformation relation between the Bos(a)-
function and the ¥-function, derived in Ref. [11] with the
explicit results for the on-shell scheme analogs of the co-
efficients a3 and a4 in Eq. (3), which are known from the
results of Refs. [19, 13] respectively. The obtained result

reads
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We checked that the identical result is obtained from
the five-loop expression for the B;¢(&)-function after
transforming it into the MOM-scheme. The expressions
for ¥3 and ¥, coincide with the results, originally ob-
tained in Refs. [21, 9]. The expression for ¥5 is new. On
the contrary to the five-loop M S- and on-shell scheme
coefficients 35 and (s it does not contain (-functions
of even arguments. However, the contributions of (-
and (3-terms manifest themselves in U5 only. They are
related to the similar scheme-independent [13] contribu-
tions into the non-logarithmic four-loop coefficients a4
and a4 of the renormalized photon vacuum polarization
function in the MS- and on-shell scheme, as given in
Ref. [13].

For the completeness we present the five-loop expres-
sion for the perturbative quenched QED contribution
to the QED [-functions. It was originally obtained in
Ref. [22] and published later in Ref. [14] after additional
theoretical cross-checks proposed in Ref. [23]. The result
reads

~

1/ 1/ a. 2 1 [, 3
Fl(a*):§<?> +Z(?> _§<?> _
23 (o \* (4157 1\ /o)’
T 128 (?) + (@ + 5 C3> <?> +0(af), (12)

where a, is the corresponding expansion parameter,
while the coefficients of Fj-function do not depend from
the renormalization scheme.

At the three- and four-loop level the related expres-
sions were obtained in Refs.[24, 9]. The 4-loop result was
independently confirmed later on in the work of Ref. [25].

In the numerical form the five-loop perturbative se-
ries we are interested in read

a 2 a 3
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Let us discuss the structure of these perturbative se-
ries. From the theoretical arguments, presented in the
work of Ref.[26] one may expect that the S-functions
are expanded into the sign-alternating asymptotic per-
turbative series with fast growing coefficients. And in-
deed, this feature is true in the case of the (-function
of the g¢*-theory, which is known in the M S-scheme
up to the five-loop [27, 28]. In the case of QED the
asymptotic estimates of Refs. [29, 30], analogous to Li-
patov’s ones for the g¢*-theory [26], indicate that the as-
ymptotic structure of QED perturbative series is more
complicated than in the g¢*-theory. Indeed, the asymp-
totic of Refs. [29, 30] were obtained only for the gauge-
invariant subclasses of diagrams with fixed number of
fermion loops. Moreover, the indication of the sign-
alternating factorial growth of the perturbative coeffi-
cients of the Fj-function, given in Ref.[29], does not
agree with the concrete behavior of the five-loop pertur-
bative series, presented in Eq. (16). Besides, as it is dis-
cussed in Refs. [29, 30], in the case of complete QED the

— 0.1076(
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strong cancellations between coefficients of sub-sets of
diagrams with different fixed numbers of fermion loops
is expected. This effect may manifest itself in the differ-
ences of sign structures of the five-loop approximations
for Bars(a), Bos(a), and ¥(a) (compare Eq. (13) with
Egs. (14) and (15)).

It is also interesting to note, that taking into ac-
count the calculated by us five-loop correction to ¥ (&)
confirms the confidence in the validity of the criterion
O < ¥(&) < a/m, derived by Schwinger [31] and Kras-
nikov [32] (see Ref.[33] as well). Note also, that the
theoretical analysis of the behavior of the perturbative
series for the Gell-Mann-Low function ¥ (&), preformed
in Ref. [34], which at large & indicates the validity of its
linear behavior, supports the mentioned above identity,
derived in Refs. [31-33].

However, we think that the the similar linear behav-
ior, obtained in Ref. [35] for the QED (-function in the
on-shell scheme for the case when the expansion parame-
ter is going to infinity should be reconsidered. Indeed,
analyzing the behavior of the perturbative series for the
Bos(a)-function from Eq. (14) at the three-, four-, and
five-loop levels, we observe the appearances of the rig-
orously speaking unphysical ultraviolet fixed points at
a/r ~ 1.2, a/m =~ 0.8, and a/r ~ 0.7 respectively.
The appearances of these zeros may affect the exact as-
ymptotic behavior of the QED -function in the on-shell
scheme, considered in Ref. [35].

This work was done using the Computational clus-
ter of the Theory Division of the Institute for Nuclear
Research of the Russian Academy of Sciences and is sup-
ported by the Grant # NS-5590.2012.2. The work of one
of us (ALK) was also supported in part by the REFBR
Grants # 11-01-00182 and 11-02-00112.

After the acceptance of this work for publication the
analytical expression for the 5-loop QED corrections to
the f45(a) and ¥-function with N-numbers of identical
charges leptons became known [36].
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