
Pis'ma v ZhETF, vol. 96, iss. 4, pp. 226 { 230 c 2012 August 25Neutron Rich Hypernuclei in Chiral Soliton ModelV.B.Kopeliovich1)Institute for Nuclear Research of the RAS, 117312 Moscow, RussiaSubmitted 18 July 2012The binding energies of neutron rich strangeness S = �1 hypernuclei are estimated in the chiral solitonapproach using the bound state rigid oscillator version of the SU(3) quantization model. Additional bindingof strange hypernuclei in comparison with nonstrange neutron rich nuclei takes place at not large values ofatomic (baryon) numbers, A = B �� 10. This e�ect becomes stronger with increasing isospin of nuclides, andfor the \nuclear variant" of the model with rescaled Skyrme constant e. Binding energies of 8�He and recentlydiscovered 6�H satisfactorily agree with data. Hypernuclei 7�H, 9�He are predicted to be bound stronger in com-parison with their nonstrange analogues 7H, 9He; hypernuclei 10� Li, 11� Li, 12� Be, 13� Be etc. are bound strongerin the nuclear variant of the model.1. Studies of nuclear states with unusual properties| nontrivial values of avor quantum numbers (strange-ness, charm or beauty), or large isospin (so called neu-tron rich nuclides) are of permanent interest. They areclosely related to the problem of existence of strangequark matter and its fragments, strange stars (analoguesof neutron stars), and may be important for astrophysicsand cosmology. Recently new direction of such studies,the studies of neutron rich hypernuclei, got new impactdue to discovery of the hypernucleus 6�H (heavy hyper-hydrogen) by FINUDA Collaboration [1] which followedits search during several years [2].Theoretical discussion of such nuclei took place dur-ing many years, beginning with the work by R.H.Dalitzand R. Levi-Setti, [3{6], in parallel with experimentalsearches [2, 7{9]. It has been noted �rst in [3] that theLambda particle may act as additional glue for the nu-clear matter, increasing the binding energy in compari-son with nucleus having zero strangeness. Here we con-�rm this observation within the chiral soliton approach(CSA). Moreover, this e�ect becomes stronger for theneutron rich nuclei, with increasing excess of neutronsinside the nucleus.The important advantage of the CSA proposed bySkyrme [10], in comparison with traditional approachesto this problem, is its generality, i.e. the possibility toconsider di�erent nuclei on equal footing, and consider-able predictive power. (Some early descriptions of thismodel can be found in [11]). The drawback of the CSAis its relatively low accuracy in describing the proper-ties of each particular nucleus. In this respect the CSAcannot compete with traditional approaches and modelslike shell model, Hartree{Fock method, etc. [3{6].1)e-mail: kopelio@inr.ru

The quantization of the model performed �rst in theSU(2) con�guration space for the baryon number onestates [12], somewhat later for con�gurations with axialsymmetry [13] and for multiskyrmions [14], allowed, inparticular, to describe the properties of nucleons and �-isobar [12] and, more recently, some properties of lightnuclei, including so called \symmetry energy" [15]2),and some other properties of nuclei [17].The SU(3) quantization of the model has been per-formed �rst within the rigid rotator approach [18] andalso within the bound state model [19]. The bindingenergies of the ground states of light hypernuclei havebeen described in [20] within a version of the boundstate chiral soliton model [21], in qualitative, even semi-quantitative agreement with empirical data [22]. Thecollective motion contributions, only, have been takeninto account in [20] (single particles excitations shouldbe added), and special subtraction scheme has been usedto remove uncertainties in absolute values of masses in-trinsic to the CSA [23, 24]. This investigation has beenextended to the higher in energy (excited) states, withbaryon number B = 2 and 3, some of them may beinterpreted as antikaon-nuclei bound states [25]. Someof the states obtained in [25] are bound stronger thanpredicted originally by Akaishi and Yamazaki [26, 27].These states could overlap and appear in experimentas a broad enhancement, in qualitative agreement withdata obtained by FINUDA collaboration [28] and morerecently by DISTO collaboration [29].To estimate the total binding energies of neutron richhypernuclei we are using here one of possible SU(3)quantization models, the rigid oscillator version of thebound state model [21] which seems to be the simplest2)Recently the neutron rich isotope 18B has been found to beunstable relative to the decay 18B ! 17B + n [16], in agreementwith prediction of the CSA [15].226 �¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 3 { 4 2012



Neutron Rich Hypernuclei in Chiral Soliton Model 227one. In section 2 our approach, the CSA, is shortly de-scribed, section 3 contains the formulas summarizing theCSA results for strange hypernuclei and numerical re-sults for the binding energies of neutron rich hypernucleiwith neutron excess N � Z = 3 and 4, atomic numberA � 17. Final section contains conclusions and discus-sion of perspectives.2. The CSA is based on few principles and ingre-dients incorporated in the truncated e�ective chiral la-grangian [10{12]:Le� = �F 2�16 Trl�l�+ 132e2Tr[l�l� ]2+F 2�m2�8 Tr�U+Uy�2�;(1)the chiral derivative l� = @�UUy; U 2 SU(2) or U 22 SU(3) { unitary matrix depending on chiral �elds, m�is the pion mass, F� { the pion decay constant knownexperimentally, e { the only parameter of the model inits minimal variant proposed �rst by Skyrme [10].The chiral and avor symmetry breaking term in thelagrangian density depends on kaon mass and decay con-stant mK and FK (FK=F� ' 1:22 from experimentaldata):LFSB = F 2Km2K � F 2�m2�24 Tr�U + Uy � 2��1�p3�8��� F 2K � F 2�48 Tr�Ul�l� + l�l�Uy��1�p3�8�: (2)This term de�nes the mass splittings between strangeand nonstrange baryons (multibaryons), modi�es someproperties of skyrmions and is crucially important in ourconsideration. The whole lagrangian given by (1), (2) isproportional to the number of colors of underkying QCD,Le� � Nc, which is one of justi�cations of the model.The mass term �F 2�m2� changes asymptotics of thepro�le f and the structure of multiskyrmions at largeB, in comparison with the massless case. For the SU(2)case U = cos f + i(n� ) sin f; (3)the unit vector n depends on 2 functions, �; �, �k arethe Pauli matrices. Three pro�les ff; �; �g(x; y; z)parametrize the 4-component unit vector on the 3-sphereS3. The topological soliton (skyrmion) is con�gurationof chiral �elds, possessing topological charge identi�edwith the baryon number B [10] (for the nucleus it isatomic number A: B = A). The important feature ofthe CSA is that multibaryon states including nuclei andhypernuclei can be considered on equal footing with theB = 1 case.Minimization of the mass functional Mcl provides3 pro�les ff; �; �g(x; y; z) and allows to calculate mo-ments of inertia �I ; �F , the �-term (we call it �)

Table 1Characteristics of classical skyrmion con�gurationswhich enter the nuclei { hypernuclei binding energiesdi�erences. The numbers are taken from [30, 31]:moments of inertia �, �-term � and ~� { in units GeV�1,!S { in MeV, �S is dimensionless (see next sections forexplanation). All these quantities have the lower indexB which is omitted for the sake of brevity. Parametersof the model F� = 186MeV; e = 4:12 [20, 30, 31]B �I �J �0F �S � ~� �S !S1 5:55 5:55 2:05 2:636 4:80 14:9 3:155 3076 25:4 178 13:1 16:64 29:0 38:0 3:125 2877 28:9 221 14:7 18:64 32:3 44:0 3:009 2838 33:4 298 17:4 22:15 38:9 47:0 3:125 2889 37:8 376 20:6 26:25 46:3 47:5 3:269 29210 41:4 455 23:0 29:35 52:0 50:0 3:289 29311 45:2 547 25:6 32:74 58:5 52:4 3:340 29513 52:1 737 30:5 39:07 70:2 56:8 3:372 29614 56:1 865 33:7 43:15 78:2 58:9 3:460 29916 63:2 1110 38:9 50:07 91:5 62:8 3:517 302and some other characteristics of chiral solitons whichcontain implicitly information about interaction betweenbaryons. In Table 1 we present numerical values of themoments of inertia and other quantities taken from [30{32] where analytical expressions for them can be foundas well. Table 2Same as in Table 1 for rescaled (nuclear) variant of themodel with constant e = 3:0 [15, 32]B �I �0F �S � ~� �S !S1 12:8 4:66 5:893 10:1 19:6 6:407 3446 62:6 30:7 38:60 64:7 50:6 6:728 3347 69:6 34:9 43:75 72:5 54:4 6:500 3308 79:9 41:3 51:97 87:4 58:2 6:785 3349 88:9 47:1 59:43 101 61:7 6:927 33710 97:4 52:6 66:40 113 64:9 6:957 33611 106 58:5 73:88 126 67:9 7:038 33712 114 63:8 80:65 138 70:8 7:049 33713 122 69:5 87:94 151 73:6 7:102 33814 132 76:3 96:81 168 76:3 7:289 34115 140 82:3 104:5 182 78:8 7:353 34216 148 88:1 112:0 196 81:2 7:402 343The moment of inertia �S given in Tables 1 and 2 iscertain combination of �0F and sigma term �:�S = �0F + 14 �F 2KF 2� � 1��: (4)�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 3 { 4 2012 5�



228 V.B.KopeliovichThe strangeness excitation energies !S given in Tables1, 2 are somewhat overestimated, especially for nuclearvariant of the model | this is an artefact of the CSA.However, this overestimation is cancelled in the nuclearbinding energies di�erences considered below.The characteristics given in Tables 1, 2 have the fol-lowing scaling properties: �I , �J , �F , �S, �, ~� � Nc;�S , !S � N0c � 1. The properties of the B = 2 toroidalskyrmion, not included in Tables 1, 2, have been consid-ered in details previously, see [25] and references therein.The rational map approximation [33] simpli�es consid-erably calculations of various characteristics of multi-skyrmions presented in Tables 1, 2.3. The observed spectrum of strange multibaryonstates (hypernuclei) is obtained by means of the SU(3)quantization procedure and depends on the quan-tum numbers of multibaryons and characteristics ofskyrmions presented in Tables 1, 2. Within the boundstate model [19{21] the antikaon �eld is bound by theSU(2) skyrmion. The mass formula takes placeM =Mcl + !S + !�S + jSj!S +�MHFS; (5)where strangeness and antistrangeness excitation ener-gies!S = Nc(�S � 1)=8�S; !�S = Nc(�S + 1)=8�S; (6)�S = �0F + 14 �F 2KF 2� � 1��; �S =q1 + �m2K=M20 ;M20 = N2c =(16��S) � N0c ; �m2K = m2KF 2K=F 2� : (7)The hyper�ne splitting correction to the energy of thebaryon state, depending on hyper�ne splitting constantscS , �cS , observed isospin I , \strange isospin" IS , theisospin of skyrmion without added antikaons Ir and theangular momentum J , equals in the case when inter-ference between usual space and isospace rotations isnegligible or not important [21], see also [31, 32]:�MHFS = J(J + 1)2�J ++cSIr(Ir + 1)� (cS � 1)I(I + 1) + (�cS � cS)IS(IS + 1)2�I :(8)The hyper�ne splitting constants are equalcS = 1� �I2�S�S (�S�1); �cS = 1� �I�S�2S (�S�1): (9)Strange isospin equals IS = 1=2 for S = �1. We recallthat body-�xed isospin Ibf = Ir + IS [21, 31, 32]. Ir isquite analogous to the so-called \right" isospin withinthe rotator quantization scheme [18]. When IS = 0,

i.e. for nonstrange states, I = Ir and this formula goesover into SU(2) formula for multiskyrmions. Correction�MHFS � 1=Nc is small at large Nc, and also for heavyavors [19, 31].The mass splitting within SU(3) multiplets is impor-tant for us here. The unknown for the B > 1 solitonsCasimir energy [23, 24] cancels in the mass splittings.For the di�erence of energies of states with strangenessS and with S = 0 which belong to multiplets with equalvalues of (p; q)-numbers (p = 2Ir), we obtain using theabove expressions for the constants cS and �cS (it is the�rst subtraction):�E(p; q; I; S; Ir; 0) = jSj!S+ �S � 14�S�S [I(I+1)�Ir(Ir+1)]++(�S � 1)(�S � 2)4�2S�S IS(IS + 1): (10)For the di�erence of binding energies of the hypernu-cleus with strangeness S = �1, isospin I = Ir�1=2 andthe nonstrange nucleus with isospin I = Ir (the neutronexcess N�Z = 2Ir) we obtain (the second subtraction):�� = !S;1�!S;B� 38 �S;1 � 1�2S;1�S;1 +�Ir + 14� �S;B � 14�S;B�S;B�� 316 (�S;B � 1)(�S;B � 2)�2S;B�S;B : (11)At Ir = 1=2 we obtain from (11) Eq. (9) of previous pa-per [20]. The term � (Ir+1=4) in Eq. (11) is responsiblefor the additional binding of neutron rich hypernuclei incomparison with S = 0 neutron rich nuclei. The resultsof calculations are presented in Tables 3 and 4.Experimental data on total binding energies of non-strange neutron rich nuclides presented in �rst numeri-cal columns of Tables 3 and 4 are taken from [34]. Theexperimental value of binding energy of hyperhydrogenshown in Table 3, �(6�H) = 10:8MeV is the sum of thebinding energy of 6�H relative to 5H + �, measured in[1], �(6�H) = (4:0 � 1:1)MeV and the binding energy of5H measured in [35], �(5H) ' 6:78MeV.The value of the binding energy of 8�He shown inTable 3 is the sum of the � separation energy 7:16 �� 0:70MeV measured in [7] and the total binding en-ergy of the 7He nucleus, �(7He) ' 28:82MeV. The valuesmarked with �, �(�)th� and �th;�, here and in Table 4denote the theoretical values obtained in the rescaled(nuclear) variant of the model with Skyrme constante = 3:0. This variant allowed to satisfactorily describemass splittings of nuclear isotopes, including neutronrich nuclides, with the mass numbers between � 10 and30 [15]. The binding energies of the ground states of�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 3 { 4 2012



Neutron Rich Hypernuclei in Chiral Soliton Model 229Table 3The total binding energies and binding energiesdi�erences ��th2;3=2 = �3=2 � �2 between hypernuclei withisospin I = 3=2 and nonstrange isotopes withI = 2; N � Z = 4 (in MeV) for the original variant,e = 4:12, and for the variant with rescaled constant, e = 3(numbers with the �). Experimental values of bindingenergy are available only for 8�He [7] and 6�H [1]A{�A �exp2 ��exp3=2 ��th2;3=2 �th3=2 ��th;�2;3=2 �th;�3=26H{6�H 5:8 10:8 9:0 14:8 11:2 178He{8�He 31:4 36:0 3:4 34:8 8:9 4010Li{10� Li 45:3 �4:7 40:6 4:8 5012Be{12� Be 68:6 �9:3 59:3 2:7 7114B{14� B 85:4 �15:0 70:4 �1:7 8416C{16� C 111 �18:5 92:3 �3:9 107hypernuclei with moderate atomic numbers can be de-scribed within this variant of the model better than inthe original variant (e = 4:12) [20] (these results will bepresented in next publications). Table 4Same as in Table 3 for odd atomic numbers A,hypernuclei with I = 2 and nonstrange isotopes withI = 5=2; N � Z = 5. Experimental data on hypernucleibinding energies are not available, stillA {�A �exp5=2 ��th5=2;2 �th2 ��th;�5=2;2 �th;�27H{7�H 8 15 23 16:4 249He{9�He 30:3 0:1 30 7:0 3711Li{11� Li 45:64 �5:0 41 5:0 5113Be{13� Be 68:1 �9:0 59 3:0 7115B{15� B 88:2 �16 72 �2:0 8617C{17� C 111:5 �17 94 �2:7 108The value 8MeV for the binding energy of 7H is pre-liminary result published in [36]. We did not includethe correction to the binding energies di�erence depend-ing on the spin of the nucleus J by following reasons.First, this correction is small in any case because themoment of inertia �J shown in Table 1 is large, gener-ally �J � B2 and �J > B�I . Besides, in some cases ofinterest spins of nucleus and hypernucleus coincide, andin any case the spins of neutron rich hypernuclei arenot known presently. The decrease of values of ��th5=2;2with increasing atomic number may be connected withlimited applicability of the rational map approximationfor describing multiskyrmions at larger baryon (atomic)numbers.4. To summarize, we have calculated the di�er-ence of total binding energies of neutron rich hyper-nucleus with atomic, or baryon number A, strangeness

S = �1, charge Z (i.e. containing Z protons), isospinI = (N � Z � 1)=2, and the zero strangeness nucleuswith same atomic number A, Z protons and N = A�Zneutrons, which has isospin I = (N �Z)=2. Within thechiral soliton approach this quantity contains the small-est uncertainty.We performed calculations for two values of theSkyrme constant, e = 4:12, and e = 3:0 (the rescaled,or nuclear variant) which allowed to describe the masssplittings of nuclear isotopes with atomic numbers upto � 30 [15]. The total binding energies of the groundstates of hypernuclei with A �� 7 are described betterwith rescaled constant e than it was made previously in[20] with the standard value e = 4:12. Both variants ofthe model provide close results for 6�H and 7�H, but forgreater atomic numbers the di�erence becomes consid-erable. Results of the rescaled nuclear variant seem tobe more reliable for greater atomic numbers, A �� 10.Further study of the dependence of our results on theonly parameter of the model, the Skyrme constant e, isdesirable.Calculations performed in present paper may be ex-tended easily to hypernuclei with arbitrary excess ofneutrons in nuclei. Just the advantage of the CSA isthat it provides a general look at nuclei with di�erentexcess of neutrons and great variety of atomic numbers.We hope that results presented here may be useful forplanning of future experiments aimed to �nd new neu-tron rich hypernuclei.The author is indebted to D.E. Lanskoy for readingthe manuscript, useful remarks and suggestions.1. M. Agnello et al. (FINUDA Collab.), Phys. Rev. Lett.108, 042501 (2012); arXiv:1203.1954 [nucl-ex].2. M. Agnello et al. (FINUDA Collab.), Phys. Lett. B 640,145 (2006); nucl-ex/0607019.3. R.H. Dalitz and R. Levi-Setti, Nuovo Cimento 30, 489(1963).4. T.Yu. Tretyakova and D.E. Lanskoy, Eur. Phys. J. A5, 391 (1999); Nucl. Phys. A 691, 51c (2001); Phys. At.Nucl. 66, 1651 (2003).5. S. Shimura, K. S. Myint, T. Harada, and Y. Akaishi, J.Phys. G 28, L1 (2002); Y. Akaishi, Prog. Theor. Phys.Suppl. 186, 378 (2010).6. L. Majling, AIP Conf. Proc. 893, 493 (2006); ibid.1012, 392 (2008); L. Majling and S. Gmuca, Phys.Atom. Nucl. 70, 1611 (2007).7. M. Juric, G. Bohm, J. Klabuhn et al., Nucl. Phys. B 35,160 (1971).8. K. Kubota et al., Nucl. Phys. A 602, 327 (1996).9. P.K. Saha et al., Phys. Rev. Lett. 94, 052502 (2005).�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 3 { 4 2012
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