Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-119
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 96 (2012) | ISSUE 4 | PAGE 243
Electronic structure of new multiple band Pt-pnictide superconductors APt3P
Abstract
We report LDA calculated band structure, densities of states and Fermi surfaces for recently discovered Pt-pnictide superconductors APt3P (A = Ca, Sr, La), confirming their multiple band nature. Electronic structure is essentially three dimensional, in contrast to Fe pnictides and chalcogenides. LDA calculated Sommerfeld coefficient agrees rather well with experimental data, leaving little space for very strong coupling superconductivity, suggested by experimental data on specific heat of SrPt3P. Elementary estimates show, that the values of critical temperature can be explained by rather weak or moderately strong coupling, while the decrease of superconducting transition temperature Tc from Sr to La compound can be explained by corresponding decrease of total density of states at the Fermi level N(E F). The shape of the density of states near the Fermi level suggests that in SrPt3P electron doping (such as replacement Sr by La) decreases N(E F) and Tc, while hole doping (e.g. partial replacement of Sr with K, Rb or Cs, if possible) would increase N(E F) and possibly Tc.