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We show that transverse, with respect to the propagation direction, local narrowing of a metal-dielectric-

metal plasmonic slot waveguide leads to a two-dimensional surface plasmon nanolocalization and can squeeze

the plasmon eigenmode into a spot with a characteristic size of about several tens of nanometers. We demon-

strate that the simultaneous waveguide tapering and decreasing transverse narrowing scale make possible an

enhancement of the plasmon propagation distance in comparison with the homogeneous waveguide. We also
find the fundamental limit of 2D plasmon nanolocalization, which is of the same order as the depth of penetra-
tion of the electromagnetic field into a metal which is actually independent of the field frequency in the near

infrared domain.

1. Introduction. Light localization and light con-
trol at nanometer scales are currently one of the most
rapidly developing branches of contemporary nanopho-
tonics, which is caused by a number of possible appli-
cations in different fields including medicine [1], biol-
ogy and chemistry [2], nanolasing [3], and integrated
optics [4,5]. Surface plasmon is widely discussed as
an electromagnetic excitation enabling to provide light
nanofocusing [6-9]. Lately, the linear and nonlinear
plasmon nanofocusing in tapered metal-dielectric-metal
(MDM) slot waveguides has been studied [10, 11]. Ta-
pered waveguides suppress Drude losses in metal due to
slowing down the 1D plasmon and may lead to strong
nonlinear effects because of the field nanofocusing. The
Kerr-type nonlinearity of a dielectric filling the slot of
the waveguide can be a cause of the spatial plasmon-
soliton wave structure formation that provides the 2D
focusing of the plasmon beam and also enhancement of
the propagation distance without a loss of the field inten-
sity if the taper angle exceeds some critical value [12, 13].
However, nonlinear plasmon nanofocusing requires a
sufficiently high initial intensity of a plasmon. Another
possibility of 2D plasmon nanofocusing can be realized
in a transversely to the propagation direction inhomo-
geneous MDM slot waveguide with, for example, a par-
abolic profile of slot thickness [14] that eventually makes
up the so-called lens-like medium.

In this Letter, we draw attention to some features of
linear 2D plasmon nanolocalization in inhomogeneous
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tapered MDM plasmonic slot waveguides. One of the
main purposes of this paper is estimation of the plasmon
propagation distance in combination with the fundamen-
tally minimum size of the plasmon focal spot.

2. Effective refraction index approximation.
Below we use the so-called effective refraction index
approximation (ERIA) which allows one to describe
the electromagnetic field of surface plasmon modes as
a volume wave in some medium with effective refrac-
tion index (or dielectric permittivity). Usually, such
an approach enables to avoid significant difficulties in
the numerical calculations of plasmonic waveguides, es-
pecially at the edges of metal and in the places of
waveguides joining (see, for example, [15-17]), where
ERIA can yield some approximate effective boundary
conditions connecting the field of plasmons in different
joined waveguides [18,19].

First of all, using Maxwell’s equations in integral
form, we rigorously show that propagation of the fun-
damental even plasmon mode in a MDM slot waveguide
with a very thin slot thickness a < 2A, = 2¢/wp, where
A, is the field penetration depth into metal at frequen-
cies w (wp > w > v),wp, v are the electron plasma
frequency and electron scattering rate in a metal, and
c is the speed of light, can be described in terms of slot
voltage with effective dielectric permittivity. Then we
outline the framework of validity of this approach which
will be applied to the waveguides with two-dimensional
inhomogeneity of the slot.

We shall consider a MDM waveguide with variable
thickness of quasi-planar dielectric slot a(z,y) shown in
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Fig.1. MDM waveguide with the varying thickness a(z,y) of a quasi-planar dielectric slot

Fig.1, where z, y are the lateral coordinates and z is the
plasmon propagation direction. We also believe that the
plasmon transverse structure along the z-axis is kept the
same as in a purely planar waveguide with a = const,
which, in turn, assumes that the scales of slot inhomo-
geneity are much greater than the slot thickness a. Ac-
cording to Faraday’s law of electromagnetic induction

/ Edl = —ikof BdS, (1)
C S

where E is the electric field tension, B is the magnetic
induction, dl is the differential element of integration
contour, dS is the differential element of the surface
stretched on integration contour directed along the nor-
mal to that surface, and kg = w/c. We calculate the
electric field circulation along two closed contours (see
Fig.1) placed in two orthogonal planes (z,z) and (y, 2)
which stretch along the z-axis up to infinity. Taking into
account that the plasmon is confined in the vicinity of
the slot, the electric field intensity at z — oo is equal
to zero. Thus, defining U = fj_:: E.dz as the voltage
between plus and minus infinities into plasmon mode we
come to the following expressions:

+oo

U(x + dz) — U(z) = iko (/

Bydz> de, (2a)
+oo
U(y +dy) —Ul(y) = —iko ( Bzdz> dy. (2b)

— 00
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Hence,
ou . too ou . Hoo
% = Zko . Bde, 6—y = —Zko [m B,_,,dZ (3)

One can see that U consists of two parts, namely, U =
=U; + Up, where U; = fj://zz E.dz is the voltage drop
inside the slot and U,,, = 2 fa°72 E.dz is the voltage drop
inside the metal. Let us consider an even plasmon mode

which obeys the following dispersion equation:

a eqd [h2 —k2em
tanh h? —k2eq= | = ——%4 | ——2 ™, 4
an (V 05‘12) e\ hze @
where h is the propagation constant
(E,H ~ exp (—ihz)), €4 and &, are the permit-
tivities of a dielectric filling the slot and metal,

respectively (which are assumed to be constant). For
a thin slot, hyperbolic tangent in (4) may be changed
by its argument, namely, tanh (\/ h? — kZeq a/2) R~
~ \/h? — kZe4 a/2, and the component of electric field
E, inside the slot can be considered a constant value.
It is easy to show that in this case, |Us| > |Up| if the
condition a > a, = |eq||lem| 1A, is fulfilled. For the
plasmon frequency w, which corresponds to the vacuum
wavelength A\ = 1550 nm, we have |e,,| ~ 60 (silver)
and a, ~ 1nm (A, = 30nm). Using another Maxwell’s
equation written in differential form, we obtain

0B, 0B,
(VxB), = Oz Oy

= ik05($,y,Z)Ez. (5)
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Integrating Eq. (5) along the z-axis within infinite limits
and taking into account expressions (3), we arrive at
02U . 02U
oz? = 0y?
The integral on the right-hand side of Eq. (6) can be
rewritten as

+oo
=—kd / e(z,y,2)E.dz. (6)

— 00

+o0 24
/ e(z,y,2)E dz = egUs + —————=Up,. (7)
—o0 av/h? — k3en,
The condition of continuity of the normal component
to metal/dielectric interface of electric displacement has
been used in expression (7). For a not too large propaga-
tion constant h? < k3|e,,|, bearing in mind that Uy =
~ U, we obtain the wave equation describing an even
plasmon in a thin MDM slot waveguide with inhomoge-
neous slot thickness in terms of effective dielectric per-
mittivity (or effective refraction index) and voltage drop
in the waveguide slot:

02U  9*U 9
B2 + 3—y2 + koeest (z,y)U =0, (8)
where
B 2, LV
Eeff = €4 [1+a($,y) (1 zzw)] . (9)

3. Two-dimensional plasmonic eigenmode in an
inhomogeneous MDM slot waveguide. In order to
study the features of two-dimensional plasmonic eigen-
modes, we consider a MDM slot waveguide with slot
thickness a dependent on the coordinate y, which is as-
sumed transversal to the propagation direction z. We
choose the function a(y) in the following model form
(see Fig.2) which allows one to get an explicit analyti-
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Fig. 2. Transverse profile of the model MDM plasmonic slot
waveguide. The parameters are a; = 15nm, a; = 12nm,
and L = 75nm

cal solution to Eq. (8):

2 _ ,, 2B A
a(y) cosh” (y/L) az
1 1
B—2Ap (a—l—a—2> y a2 > ax. (10)

Here, ay is the slot thickness at |y|—o00 and a; is that in
the bottleneck at y = 0. Such a profile of a(y) makes up
the two-dimensional plasmonic waveguide. Indeed, ef-
fective dielectric permittivity increases towards the cen-
tral part of the waveguide y = 0, which thus provides
the lateral plasmon confinement in the plane of the slot,
i.e. in the y direction. It is quite obvious that the fun-
damental mode of this waveguide is the most localized.
Taking into account Egs. (9) and (10), the solution of
Eq. (8) can be expressed in explicit form

Uo = Vo(y) exp(—ihz);

Vo(y) =C L

cosh? (y/L)’ (11)

where C is an arbitrary constant value and h is the prop-
agation constant;

11
p=—5+5V1+4(kL)4B, (12)

(hL)? = p® + (koL)%eqa(1 + A). (13)

Formulae (12), (13) were obtained for the lossless
case. In order to involve dissipation under considera-
tion, one should replace A and B by A (1 — iv/2w) and
B (1 — iv/2w), respectively. Dispersion equation (13) is
shown in Fig.3 for different a;. The plasmon lateral
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Fig. 3. Dispersion curves of the fundamental even mode of
the MDM slot waveguide with az = 15nm, A, = 30nm,
v =0.1w, Ao = 1550 nm, eg = 4.9 at different a;: 3 (1), 5
(2), and 7nm (3). Shaded area denotes the zone of inap-
plicability of the accepted ERIA approach

localization scale strongly depends on the value of the
parameter p given by expression (12) which is deter-
mined, in turn, by the inhomogeneity scale L as well
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as by the minimum slot width. By means of Egs. (11)
and (12), one can make sure that the minimum lateral
width (at up to the 0.5 intensity level)

2
P kov/elB

of a plasmon is reached at p ~ 0.5, and it actually de-
pends only on the relative narrowing of the slot, i.e.,
on B. It is quite evident that the accepted ERIA is
valid up to the lateral scales of the plasmon mode com-
parable with the field penetration depth into a metal.
Hence, we have the right to consider the minimum slot
thickness a1 < a2 which provides A, ~ A, or, in other
words, a; ~ 0.5k§A3eq ~ 1nm for the frequency cor-
responding to the vacuum wavelength A\ = 1550 nm,
A, = 30nm, and ¢4 = 4.9 (BiMnOs3) . The dependences
of the plasmon eigenmode lateral size on L are depicted
in Fig. 4 for different values a;. Of course, narrowing

A (14)
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Fig.4. The dependences of the plasmon eigenmode lat-
eral size A, on L in the case of the MDM slot waveguide
with a2 = 15nm, A, = 30nm, v = 0.1w, Ao = 1550 nm,
eq = 4.9 at different a;: 3 (1), 5 (2), and 7nm (3). Shaded
area denotes the zone of inapplicability of the accepted
ERIA approach

the slot or, which is the same, increasing B, leads to the
loss enhancement and, therefore, decreases the plasmon
propagation distance. However, the results obtained in
papers [9—12] give grounds to expect an extension of
the propagation distance despite the energy dissipation
in a tapered slot, which, in our case, means the simulta-
neous adiabatically slow changing of all slot parameters,
which provides the maximum field localization, and, the
minimum loss of intensity.

4. The features of plasmon propagation in
MDM slot waveguides with slowly varying pa-

Mucema B ARIT® Tom 96 BeID.3-4 2012

rameters. In order to obtain an equation for the
slowly varying amplitude of the plasmon in a MDM slot
waveguide with slowly varying parameters, we start from
initial equation (8) in which the dependence eeg on z is
assumed to be slow compared with that in the trans-
verse direction y: z—pz, where p is the formally intro-
duced small parameter characterizing slowness. We also
rewrite effective dielectric permittivity (9) in the form
cer (U, y) = €4 - 2Ap[a(;uz:,y)]_1 (1 —iv/2w), thereby
explicitly emphasizing its imaginary part under the con-
dition a(vz,y) < 2A,; the ratio v/2w is assumed to be
of the same order of smallness as p. Then, the solution
of Eq. (11) is sought in the form of asymptotic series:

U("an) = [Q(M-’E)Vo([t-’lf,y,ll = 0)+

+ pUs(pz,y) + ... ]exp [—i/h(um)dm] . (15)

In zero order of i, we come to an equation for the unper-
turbed lateral structure of the plasmon mode, namely,

9?Vo 2A
kicq—2— — h? = 1
o+ o gt~ W) o =0, (10

where Vp(uz,y) is the purely real solution perfectly lo-
calized along y, which is identical to expression (11) with
v =0. Let Vo(uz,y) be normalized as

(Ve (ue,y)) = /

—0o0

o0

Vo (ue,y)dy =1.  (17)

Eq. (17) just defines a constant C in expression (11).
Then Q(vz) can be called the plasmon amplitude. In
the first order of u, we have an equation for the correc-
tion Uy (uz,y):

0*U, 9 24, 2 B
-t [kosdm —h (/Liﬂ,y):l U1 =

Oy?
_ [.,0Q ok Vo
Yz, 2 oyl =
+ 2wk05da(ux,y)QV0] =F. (18)

According to Fredholm theorem of alternative, the con-
dition of solvability of Eq. (18) (nondiverging of the
correction U;) is orthogonality of the eigenmode of
homogeneous Eq. (18) for U; (which obviously co-
incides with V) on the right-hand side of Eq. (18)
(F(pz,y)Uo(nz,y)) = 0, which eventually leads to the
desired equation for slowly varying amplitude @

0Q Oh

2h%+%

2A
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Fig. 5. Spatial distribution of the normalized plasmon intensity in the slot MDM waveguide with az = 15nm, @1(0) = 12nm,

Ap = 30nm, v = 0.1w, Ao = 1550 nm, L = 100 nm, ¢; = 4.9,
parameter l,: o — oo (a), lo = 4500nm (b), I, = 6000 nm (c)

and ai(z) = a1(0)(1 — z/la) for three different values of the
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Fig. 6. Spatial distribution of the normalized plasmon intensity in the slot MDM waveguide with ¢1(0) = 12nm, A, = 30 nm,

v = 0.1w, Ao = 1550 nm, ¢4 = 4.9, p = 1, and b = 1.2 for the
a1(z) = a1(0) (1 — 2/1p)* (b), ai(z) = a1(0) (1 — 22/1,)* (c)

Equation (19) can easily be integrated and its solution
has the following form (now we can assume that the for-
mal auxiliary parameter y is equal to unity, i.e. u =1):

20, o
r) Osd/ h(a') < uzy)V>
Q(z) = Qo h(;) exp [~T(z)]. (20)

Here, hg and Q¢ are the values of the propagation con-
stant and plasmon amplitude in the initial section of the
waveguide with = 0. The local value h(z) of the prop-
agation constant in the waveguide section z is given by
Eq. (13). This equation can be rewritten for the electric
field amplitude in the waveguide

_ hO ‘/(J(mvy)
E(z,y) = QO” MW exp

Then we consider some typical behaviors of a plas-
mon for different kinds of the longitudinal (along )

[-T(=)].  (21)

different dependences a1 (z): ai(z) = a1(0) (1 — 0.52/1,)° (a),

waveguide inhomogeneity which are described by solu-
tion (21). All of those scenarios are shown in Figs.5
and 6. Figure 5a demonstrates the plasmon propagating
in a MDM slot waveguide with a, = 15nm, a; = 12 nm,
A, = 30nm, L = 100nm, v/2w = 0.05, Ag = 1550 nm,
and €4 = 4.9 (BiMnOs3), which is accompanied by an
usual exponential decay. One can see that the charac-
teristic path length of a plasmon does not exceed one
micrometer in this case. Figs.5b and c show the plas-
mon intensity behavior I(z,y) = |E(z,y)|? in a tapered
waveguide with a;(z) = a1(0) (1 — z/l,), where a;(0) =
= 12nm, a; = 15nm and the same parameters indicated
above for two different scales of taper: (b)l, = 4500 nm
and (c)l, = 6000 nm. As can be seen in Fig. 5, tapering
leads to increasing plasmon propagation distance.

The final Fig.6 demonstrates some particular situ-
ation where a1 2(z) and L(z) are changing simultane-
ously in such a manner that the parameter p is a con-
stant value, p = 1. Then, three scenarios are possible,
which is shown in Fig. 6 (see panels (a), (b), (c), and re-
spective figure captions). Furthermore, the combination
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of parameters assuring conservation of p = 1 and b =
= hL = const > 1 allows one to calculate explicitly the
plasmon propagation distance under condition I(z) =
= const (Fig.6b). One can easily show that in order to
provide a constant plasmon intensity along the propaga-
tion direction, the function a;(z) must obey the special
law

a1(2) = ar(0) (1 —2/1,)*, (22)
where
Ao [ai(0) 3bV1 + b2 (23)
Py w2008 30241

The zero value of the expression in the parentheses in
Eq. (22) just defines the plasmon path length =, = .
According to Eq. (23), I, = 4.2 um for a1(0) = 12nm,
A, = 30nm, v/2w = 0.05, Ap = 1550nm, ¢4 =
=4.9(BiMnOs3), and b = 1.2. In all the cases consid-
ered, the transverse scale of a plasmon may achieve val-
ues comparable with the skin layer depth A, in a metal.
Thus, the special transversal and longitudinal profiling
of MDM plasmonic slot waveguide offers an opportunity
for light nanolocalization as well as for enhancement (in
several times) of the plasmon propagation distance in
comparison with homogeneous waveguides.

5. Conclusions. In conclusion, the equation for
studying the plasmon propagation in a MDM slot
waveguide has been derived directly from integral
Maxwell’s equations and its domain of applicability has
been stipulated. The possibilities of plasmon nanolocal-
ization along with the enhancement of its propagation
distance in specially profiled waveguides are shown.
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