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 2012 August 25Two-dimensional plasmonic eigenmode nanolocalization in aninhomogeneous metal-dielectric-metal slot waveguideD.A. Smirnova+1), A. I. Smirnov�, A. A. Zharov+�+Institute for Physics of Microstructures RAS, 603950 N.Novgorod, Russia�Institute of Applied Physics RAS, 603950 N.Novgorod, Russia�National Research University of Information Technologies, Mechanics and Optics, 197101 St.-Petersburg, RussiaSubmitted 10 May 2012Resubmitted 6 July 2012We show that transverse, with respect to the propagation direction, local narrowing of a metal-dielectric-metal plasmonic slot waveguide leads to a two-dimensional surface plasmon nanolocalization and can squeezethe plasmon eigenmode into a spot with a characteristic size of about several tens of nanometers. We demon-strate that the simultaneous waveguide tapering and decreasing transverse narrowing scale make possible anenhancement of the plasmon propagation distance in comparison with the homogeneous waveguide. We also�nd the fundamental limit of 2D plasmon nanolocalization, which is of the same order as the depth of penetra-tion of the electromagnetic �eld into a metal which is actually independent of the �eld frequency in the nearinfrared domain.1. Introduction. Light localization and light con-trol at nanometer scales are currently one of the mostrapidly developing branches of contemporary nanopho-tonics, which is caused by a number of possible appli-cations in di�erent �elds including medicine [1], biol-ogy and chemistry [2], nanolasing [3], and integratedoptics [4, 5]. Surface plasmon is widely discussed asan electromagnetic excitation enabling to provide lightnanofocusing [6{9]. Lately, the linear and nonlinearplasmon nanofocusing in tapered metal-dielectric-metal(MDM) slot waveguides has been studied [10, 11]. Ta-pered waveguides suppress Drude losses in metal due toslowing down the 1D plasmon and may lead to strongnonlinear e�ects because of the �eld nanofocusing. TheKerr-type nonlinearity of a dielectric �lling the slot ofthe waveguide can be a cause of the spatial plasmon-soliton wave structure formation that provides the 2Dfocusing of the plasmon beam and also enhancement ofthe propagation distance without a loss of the �eld inten-sity if the taper angle exceeds some critical value [12, 13].However, nonlinear plasmon nanofocusing requires asu�ciently high initial intensity of a plasmon. Anotherpossibility of 2D plasmon nanofocusing can be realizedin a transversely to the propagation direction inhomo-geneous MDM slot waveguide with, for example, a par-abolic pro�le of slot thickness [14] that eventually makesup the so-called lens-like medium.In this Letter, we draw attention to some features oflinear 2D plasmon nanolocalization in inhomogeneous1)e-mail: Namaste89@mail.ru

tapered MDM plasmonic slot waveguides. One of themain purposes of this paper is estimation of the plasmonpropagation distance in combination with the fundamen-tally minimum size of the plasmon focal spot.2. E�ective refraction index approximation.Below we use the so-called e�ective refraction indexapproximation (ERIA) which allows one to describethe electromagnetic �eld of surface plasmon modes asa volume wave in some medium with e�ective refrac-tion index (or dielectric permittivity). Usually, suchan approach enables to avoid signi�cant di�culties inthe numerical calculations of plasmonic waveguides, es-pecially at the edges of metal and in the places ofwaveguides joining (see, for example, [15{17]), whereERIA can yield some approximate e�ective boundaryconditions connecting the �eld of plasmons in di�erentjoined waveguides [18, 19].First of all, using Maxwell's equations in integralform, we rigorously show that propagation of the fun-damental even plasmon mode in a MDM slot waveguidewith a very thin slot thickness a < 2�p = 2c=!p, where�p is the �eld penetration depth into metal at frequen-cies ! (!p � ! � �), !p; � are the electron plasmafrequency and electron scattering rate in a metal, andc is the speed of light, can be described in terms of slotvoltage with e�ective dielectric permittivity. Then weoutline the framework of validity of this approach whichwill be applied to the waveguides with two-dimensionalinhomogeneity of the slot.We shall consider a MDM waveguide with variablethickness of quasi-planar dielectric slot a(x; y) shown in262 �¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 3 { 4 2012
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Fig. 1. MDM waveguide with the varying thickness a(x; y) of a quasi-planar dielectric slotFig. 1, where x, y are the lateral coordinates and x is theplasmon propagation direction. We also believe that theplasmon transverse structure along the z-axis is kept thesame as in a purely planar waveguide with a = const,which, in turn, assumes that the scales of slot inhomo-geneity are much greater than the slot thickness a. Ac-cording to Faraday's law of electromagnetic inductionZC Edl = �ik0 IS BdS; (1)where E is the electric �eld tension, B is the magneticinduction, dl is the di�erential element of integrationcontour, dS is the di�erential element of the surfacestretched on integration contour directed along the nor-mal to that surface, and k0 = !=c. We calculate theelectric �eld circulation along two closed contours (seeFig. 1) placed in two orthogonal planes (x; z) and (y; z)which stretch along the z-axis up to in�nity. Taking intoaccount that the plasmon is con�ned in the vicinity ofthe slot, the electric �eld intensity at z ! �1 is equalto zero. Thus, de�ning U = R +1�1 Ezdz as the voltagebetween plus and minus in�nities into plasmon mode wecome to the following expressions:U(x+ dx)� U(x) = ik0�Z +1�1 Bydz� dx; (2a)U(y + dy)� U(y) = �ik0�Z +1�1 Bxdz� dy : (2b)

Hence,@U@x = ik0 Z +1�1 Bydz ; @U@y = �ik0 Z +1�1 Bxdz : (3)One can see that U consists of two parts, namely, U == Us + Um, where Us = R +a=2�a=2 Ezdz is the voltage dropinside the slot and Um = 2 R1a=2Ezdz is the voltage dropinside the metal. Let us consider an even plasmon modewhich obeys the following dispersion equation:tanh�qh2 � k20"d a2� = � "d"msh2 � k20"mh2 � k20"d ; (4)where h is the propagation constant(E;H � exp (�ihx)), "d and "m are the permit-tivities of a dielectric �lling the slot and metal,respectively (which are assumed to be constant). Fora thin slot, hyperbolic tangent in (4) may be changedby its argument, namely, tanh�ph2 � k20"d a=2� �� ph2 � k20"d a=2, and the component of electric �eldEz inside the slot can be considered a constant value.It is easy to show that in this case, jUsj � jUmj if thecondition a � ac = j"djj"mj�1�p is ful�lled. For theplasmon frequency !, which corresponds to the vacuumwavelength �0 = 1550 nm, we have j"mj � 60 (silver)and ac � 1 nm (�p � 30 nm). Using another Maxwell'sequation written in di�erential form, we obtain(r�B)z = @By@x � @Bx@y = ik0"(x; y; z)Ez: (5)�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 3 { 4 2012



264 D.A. Smirnova, A. I. Smirnov, A.A. ZharovIntegrating Eq. (5) along the z-axis within in�nite limitsand taking into account expressions (3), we arrive at@2U@x2 + @2U@y2 = �k20 Z +1�1 "(x; y; z)Ezdz: (6)The integral on the right-hand side of Eq. (6) can berewritten asZ +1�1 "(x; y; z)Ezdz = "dUs + 2"daph2 � k20"mUm: (7)The condition of continuity of the normal componentto metal/dielectric interface of electric displacement hasbeen used in expression (7). For a not too large propaga-tion constant h2 � k20 j"mj, bearing in mind that Us �� U , we obtain the wave equation describing an evenplasmon in a thin MDM slot waveguide with inhomoge-neous slot thickness in terms of e�ective dielectric per-mittivity (or e�ective refraction index) and voltage dropin the waveguide slot:@2U@x2 + @2U@y2 + k20"e�(x; y)U = 0; (8)where "e� = "d �1 + 2�pa(x; y) �1� i �2!�� : (9)3. Two-dimensional plasmonic eigenmode in aninhomogeneous MDM slot waveguide. In order tostudy the features of two-dimensional plasmonic eigen-modes, we consider a MDM slot waveguide with slotthickness a dependent on the coordinate y, which is as-sumed transversal to the propagation direction x. Wechoose the function a(y) in the following model form(see Fig. 2) which allows one to get an explicit analyti-
150– –75 0 75 150

–7.5

0

7.5

Dielectric

Metal

Metal

y (nm)

a
(

) 
 (

n
m

)
y

Fig. 2. Transverse pro�le of the model MDM plasmonic slotwaveguide. The parameters are a2 = 15 nm, a1 = 12 nm,and L = 75 nmcal solution to Eq. (8):2�pa(y) = A+ Bcosh2 (y=L) ; A = 2�pa2 ;B = 2�p� 1a1 � 1a2� ; a2 > a1: (10)

Here, a2 is the slot thickness at jyj!1 and a1 is that inthe bottleneck at y = 0. Such a pro�le of a(y) makes upthe two-dimensional plasmonic waveguide. Indeed, ef-fective dielectric permittivity increases towards the cen-tral part of the waveguide y = 0, which thus providesthe lateral plasmon con�nement in the plane of the slot,i.e. in the y direction. It is quite obvious that the fun-damental mode of this waveguide is the most localized.Taking into account Eqs. (9) and (10), the solution ofEq. (8) can be expressed in explicit formU0 = V0(y) exp(�ihx);V0(y) = C 1coshp (y=L) ; (11)where C is an arbitrary constant value and h is the prop-agation constant;p = �12 + 12p1 + 4(k0L)2"dB; (12)(hL)2 = p2 + (k0L)2"d(1 +A): (13)Formulae (12), (13) were obtained for the losslesscase. In order to involve dissipation under considera-tion, one should replace A and B by A (1� i�=2!) andB (1� i�=2!), respectively. Dispersion equation (13) isshown in Fig. 3 for di�erent a1. The plasmon lateral
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Fig. 3. Dispersion curves of the fundamental even mode ofthe MDM slot waveguide with a2 = 15 nm, �p = 30 nm,� = 0:1!, �0 = 1550 nm, �d = 4:9 at di�erent a1: 3 (1), 5(2), and 7 nm (3). Shaded area denotes the zone of inap-plicability of the accepted ERIA approachlocalization scale strongly depends on the value of theparameter p given by expression (12) which is deter-mined, in turn, by the inhomogeneity scale L as well�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 3 { 4 2012



Two-dimensional plasmonic eigenmode nanolocalization : : : 265as by the minimum slot width. By means of Eqs. (11)and (12), one can make sure that the minimum lateralwidth (at up to the 0:5 intensity level)�p � 2k0p"dB (14)of a plasmon is reached at p � 0:5, and it actually de-pends only on the relative narrowing of the slot, i.e.,on B. It is quite evident that the accepted ERIA isvalid up to the lateral scales of the plasmon mode com-parable with the �eld penetration depth into a metal.Hence, we have the right to consider the minimum slotthickness a1 � a2 which provides �p � �p or, in otherwords, a1 � 0:5k20�3p"d � 1 nm for the frequency cor-responding to the vacuum wavelength �0 = 1550 nm,�p = 30nm, and "d = 4:9 (BiMnO3) . The dependencesof the plasmon eigenmode lateral size on L are depictedin Fig. 4 for di�erent values a1. Of course, narrowing
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Fig. 4. The dependences of the plasmon eigenmode lat-eral size �p on L in the case of the MDM slot waveguidewith a2 = 15 nm, �p = 30 nm, � = 0:1!, �0 = 1550 nm,�d = 4:9 at di�erent a1: 3 (1), 5 (2), and 7 nm (3). Shadedarea denotes the zone of inapplicability of the acceptedERIA approachthe slot or, which is the same, increasing B, leads to theloss enhancement and, therefore, decreases the plasmonpropagation distance. However, the results obtained inpapers [9 { 12] give grounds to expect an extension ofthe propagation distance despite the energy dissipationin a tapered slot, which, in our case, means the simulta-neous adiabatically slow changing of all slot parameters,which provides the maximum �eld localization, and, theminimum loss of intensity.4. The features of plasmon propagation inMDM slot waveguides with slowly varying pa-

rameters. In order to obtain an equation for theslowly varying amplitude of the plasmon in a MDM slotwaveguide with slowly varying parameters, we start frominitial equation (8) in which the dependence "e� on x isassumed to be slow compared with that in the trans-verse direction y: x!�x, where � is the formally intro-duced small parameter characterizing slowness. We alsorewrite e�ective dielectric permittivity (9) in the form"e�(�x; y) = "d � 2�p[a(�x; y)]�1 (1� i�=2!), therebyexplicitly emphasizing its imaginary part under the con-dition a(�x; y) � 2�p; the ratio �=2! is assumed to beof the same order of smallness as �. Then, the solutionof Eq. (11) is sought in the form of asymptotic series:U(x; y) = [Q(�x)V0(�x; y; � = 0)++ �U1(�x; y) + : : : ] exp ��i Z h(�x)dx� : (15)In zero order of �, we come to an equation for the unper-turbed lateral structure of the plasmon mode, namely,@2V0@y2 + �k20"d 2�pa(�x; y) � h2(�x; y)�V0 = 0; (16)where V0(�x; y) is the purely real solution perfectly lo-calized along y, which is identical to expression (11) with� = 0. Let V0(�x; y) be normalized as
V 20 (�x; y)� = Z 1�1 V 20 (�x; y)dy = 1: (17)Eq. (17) just de�nes a constant C in expression (11).Then Q(�x) can be called the plasmon amplitude. Inthe �rst order of �, we have an equation for the correc-tion U1(�x; y):@2U1@y2 + �k20"d 2�pa(�x; y) � h2(�x; y)�U1 == i �2h@Q@x V0 + @h@xQV0 + 2hQ@V0@x ++ �2!k20"d 2�pa(�x; y)QV0� � F: (18)According to Fredholm theorem of alternative, the con-dition of solvability of Eq. (18) (nondiverging of thecorrection U1) is orthogonality of the eigenmode ofhomogeneous Eq. (18) for U1 (which obviously co-incides with V0) on the right-hand side of Eq. (18)hF (�x; y)U0(�x; y)i = 0, which eventually leads to thedesired equation for slowly varying amplitude Q2h@Q@x + @h@xQ+ �2!Qk20"d� 2�pa(�x; y)V 20 � = 0: (19)�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 3 { 4 2012
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Fig. 5. Spatial distribution of the normalized plasmon intensity in the slot MDM waveguide with a2 = 15 nm, a1(0) = 12 nm,�p = 30 nm, � = 0:1!, �0 = 1550 nm, L = 100 nm, �d = 4:9, and a1(x) = a1(0)(1 � x=la) for three di�erent values of theparameter la: la !1 (a), la = 4500 nm (b), la = 6000 nm (c)

Fig. 6. Spatial distribution of the normalized plasmon intensity in the slot MDM waveguide with a1(0) = 12 nm, �p = 30 nm,� = 0:1!, �0 = 1550 nm, �d = 4:9, p = 1, and b = 1:2 for the di�erent dependences a1(x): a1(x) = a1(0) (1� 0:5x=lp)2 (a),a1(x) = a1(0) (1� x=lp)2 (b), a1(x) = a1(0) (1� 2x=lp)2 (c)Equation (19) can easily be integrated and its solutionhas the following form (now we can assume that the for-mal auxiliary parameter � is equal to unity, i.e. � = 1):�(x) = �4!k20"d Z x0 1h(x0) � 2�pa(�x; y)V 20 � dx0;Q(x) = Q0s h0h(x) exp [��(x)] : (20)Here, h0 and Q0 are the values of the propagation con-stant and plasmon amplitude in the initial section of thewaveguide with x = 0. The local value h(x) of the prop-agation constant in the waveguide section x is given byEq. (13). This equation can be rewritten for the electric�eld amplitude in the waveguideE(x; y) = Q0s h0h(x) V0(x; y)a(x; y) exp [��(x)] : (21)Then we consider some typical behaviors of a plas-mon for di�erent kinds of the longitudinal (along x)

waveguide inhomogeneity which are described by solu-tion (21). All of those scenarios are shown in Figs. 5and 6. Figure 5a demonstrates the plasmon propagatingin a MDM slot waveguide with a2 = 15nm, a1 = 12nm,�p = 30nm, L = 100 nm, �=2! = 0:05, �0 = 1550 nm,and "d = 4:9 (BiMnO3), which is accompanied by anusual exponential decay. One can see that the charac-teristic path length of a plasmon does not exceed onemicrometer in this case. Figs. 5b and c show the plas-mon intensity behavior I(x; y) = jE(x; y)j2 in a taperedwaveguide with a1(x) = a1(0) (1� x=la), where a1(0) == 12 nm, a2 = 15nm and the same parameters indicatedabove for two di�erent scales of taper: (b) la = 4500 nmand (c) la = 6000 nm. As can be seen in Fig. 5, taperingleads to increasing plasmon propagation distance.The �nal Fig. 6 demonstrates some particular situ-ation where a1;2(x) and L(x) are changing simultane-ously in such a manner that the parameter p is a con-stant value, p = 1. Then, three scenarios are possible,which is shown in Fig. 6 (see panels (a), (b), (c), and re-spective �gure captions). Furthermore, the combination�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 3 { 4 2012



Two-dimensional plasmonic eigenmode nanolocalization : : : 267of parameters assuring conservation of p = 1 and b == hL = const > 1 allows one to calculate explicitly theplasmon propagation distance under condition I(x) == const (Fig. 6b). One can easily show that in order toprovide a constant plasmon intensity along the propaga-tion direction, the function a1(x) must obey the speciallaw a1(x) = a1(0) (1� x=lp)2 ; (22)where lp = 4!� �0� s a1(0)2�p"d 3bp1 + b23b2 + 1 : (23)The zero value of the expression in the parentheses inEq. (22) just de�nes the plasmon path length xc � lp.According to Eq. (23), lp � 4:2�m for a1(0) = 12 nm,�p = 30nm, �=2! = 0:05, �0 = 1550 nm, "d == 4:9 (BiMnO3), and b = 1:2. In all the cases consid-ered, the transverse scale of a plasmon may achieve val-ues comparable with the skin layer depth �p in a metal.Thus, the special transversal and longitudinal pro�lingof MDM plasmonic slot waveguide o�ers an opportunityfor light nanolocalization as well as for enhancement (inseveral times) of the plasmon propagation distance incomparison with homogeneous waveguides.5. Conclusions. In conclusion, the equation forstudying the plasmon propagation in a MDM slotwaveguide has been derived directly from integralMaxwell's equations and its domain of applicability hasbeen stipulated. The possibilities of plasmon nanolocal-ization along with the enhancement of its propagationdistance in specially pro�led waveguides are shown.This work was supported by the RFBR (Grants#11-02-00531, 11-02-97058), the Ministry of Educa-tion and Science of the Russian Federation (Contract# P560), and Dynasty Foundation.
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