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The s-channel unitarity condition for the imaginary part of the hadronic elastic scattering amplitude outside
the diffraction peak is studied within different assumptions about the behavior of its real part. The integral
equation for the imaginary part is derived with the asymptotical expression for the real part inserted in the
unitarity condition. The conclusions about the asymptotical approach to the black disk limit and possible
zeros of the imaginary part of the amplitude are obtained. Their relation to the present day experiments is

discussed.

The properties of high energy elastic scattering of
hadrons are well studied in experiment. Both the energy
behavior and the dependence on transferred momenta
of the differential cross sections are analyzed. Despite
many proposed theoretical models, no satisfactory de-
scription of the whole sample of experimentally observed
features has yet appeared. Most models are purely phe-
nomenological and deal with some sets of adjustable pa-
rameters.

The only rigorous requirement imposed on the elastic
scattering amplitude follows from the unitarity condition
SST = 1 mandatory for the S-matrix in any field theory.
However, in absence of equations of fundamental theory,
one has to use it within definite assumptions and in lim-
ited regions of kinematical variables to get any reliable
conclusions. In particular, it can be exploited for ob-
taining some results concerning the behavior of the real
and imaginary parts of the elastic scattering amplitude.

In general, the unitarity condition for the elastic scat-
tering amplitude A(p, ) is written in a form

1
mA(p,0) = L(p,0) + F(p,0) = 55—
/ / 9, dp, 001 sin 02T A(p, 1)Im A(p, 62) (1+p1p2)
1d0> \/[cos0— cos(01+62)][cos(81 —02) — cos 6]
+ F(p,6). (1)

Here, p and 6 denote the momentum and the scattering
angle in the center of mass system. p;’s take into ac-
count the real parts at the corresponding angles. The
region of integration over angles in Eq. (1) is given by
the conditions

|01—02|§0, 0<6;+0, <2m—46. (2)

The integral term represents the two-particle interme-
diate states of the incoming particles. The function
F(p,0), called following Ref. [1] as the overlap function,
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represents the shadowing contribution of the inelastic
processes to the elastic scattering amplitude. It deter-
mines the main structure in the shape of the diffraction
peak and is completely non-perturbative so that only
some phenomenological models pretend to describe it.
Therefore, the unitarity condition is practically useless
at very small angles but can be effectively used outside
the diffraction cone as we show below.

The elastic scattering proceeds mostly at small an-
gles. The diffraction peak has a Gaussian shape in the
scattering angles or exponentially decreasing as the func-
tion of the transferred momentum squared

do do -t Bt Bp292
— | — = ~e . 3
dt (dt)to € re ®)

The four-momentum transfer squared is
t = —2p*(1 — cosh) ~ —p*0° ~ —p7, (4)

where p; is the transverse momentum. At large energies
the forward scattering amplitude has a small real part as
known both from experiment and from the dispersion re-
lations. Then the elastic scattering in this region labeled
by the subscript d can be described by the amplitude

Aa(p,0) = dipPore PP /2 (1 — ipy) (5)

with a proper optical theorem normalization in the for-
ward direction to the total cross-section o; and a small
correction due to the real part.

Now, let us consider the integral term I> outside the
diffraction peak. Because of the sharp fall off of the
amplitude (5) with angle, the principal contribution to
the integral arises from a narrow region around the line
0, + 65 ~ 6. Therefore one of the amplitudes should be
inserted at small angles within the cone while another
one is kept at angles outside it. Thus, inserting Eq. (5)
for one of the amplitudes in I and integrating over one
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of the angles the inhomogeneous linear integral equation
is obtained:

Dboy
ImA(p,0) = ——— x
(,6) 47/ 27 B

+oo
. / dfe PP OO0 2(1 4+ pyp)Im A(p, 61) +

— 00

+ F(p,0). (6)

It can be solved analytically (for more details see [2, 3])
with the assumptions that the role of the overlap func-
tion F(p,0) is negligible outside the diffraction cone®)
and the real parts may be replaced by their average val-
ues in the diffraction peak pg and outside it p;, corre-
spondingly. Let us stress once more that the Gaussian
shape (5) of the amplitude has been only used at rather
small angles in accordance with experimental data.
One gets the analytical solution as the eigenfunction
of the homogeneous integral equation with F(p, 8)=0

mA(p,0) = Co(p)e” V2" Toam? 4
+ 3 Co(p)e Bt P cog[|Tmb, (p)[ph — $a],  (7)
n=1

where Z = 4rB/o; and

by, = /27 B|n|(1 + isignn), n=+1,£2,... (8)

The solution contains the exponentially decreasing
with 6 (or 4/|t|) term (Orear regime!) with imposed on
it damped oscillations.

Note that the solution predicts the dependence on
pl ~ \/m but not the dependence on the collision en-
ergy! There are no zeros on the t-axis unless the ampli-
tudes of oscillations C), (p) become extremely large.

Namely this expression was successfully used to fit
the experimental data about the elastic scattering differ-
ential cross-section outside the diffraction cone (in the
Orear regime region) at comparatively low energies in
Ref. [6] and in Ref.[4] at the LHC energy 7TeV. In
the latter case, the value of Z = 47w B/o; is so close
to 1 at 7TeV that the first term is very sensitive to
the ratio p; outside the diffraction peak. Thus, it be-
came possible for the first time to estimate p; from fits
of experimental data and it happened to be quite large
(o1 ® —2.1). Concerning the ratio pg it was chosen as
prescribed by the dispersion relations for its value at
t =017, 8] (pg = po =~ 0.14).

Comparing the values of pg and p;, one is tempted to
understand such a large difference between them. The

DThe results of the papers [4, 5] give strong support to this
assumption.

only guess, we have at present, is obtained from the as-
ymptotical formula derived in Ref.[9] which relates the
behaviors of the real and imaginary parts at nonzero
transferred momenta ¢ in a following way

t[dIm A(t)/dt] }

Tm A(t) ©)

p(t) = po {1 n

This relation can be explicitly demonstrated now if

one uses the first term of the imaginary part of the scat-

tering amplitude at fixed ¢ < 0 given by Eq. (7) at finite

energies and neglects other terms which decrease much
faster with angles. The result is

p(t) = po(1 - av/]t]/2), (10)

A
a=/2Bln—2". (11)
1+ papi

We note that p passes through zero and changes sign
at |to] = 4/a®. This agrees with the general theorem
on the change of sign of the real part of the high-energy
scattering amplitude which has been proven first in Ref.
[10]. Estimates at 7 TeV [4] show that |to| ~ 0.3 GeV?2.
However, this regime of the unlimited decrease of p
with |¢| does not look satisfactory. And really it can be
damped if one does not replace p(t) by its average value
in the Orear region p; but assumes that its ¢t-dependence
may be left intact directly in the solution and differenti-
ates it according to (9) inserting there the first term of
(7). Then the following differential equation is obtained

d 2 (Ze” -1
do__v_2(zev-1 )y
de z x? P2

where

Here, z = /2B|t|, v = /In[Z/(1 + pop(t))]-

As awaited, the resulting shape of p(t) = (Ze’”2 -
— 1)/po obtained as the solution of this equation [11]
has a single zero at |tg| ~ 0.3GeV? and, what is re-
ally impressive, it steeply decreases in the Orear region
of 0.3 < |t| < 1.4GeV? approaching the large nega-
tive saturation value p(|t| = o00) = —1/po = —7.25 (at
7TeV) for high transferred momenta || (see Fig.1 in
[11]). Note that f, =1+ pop(t) tends to O there.

The bold usage of this procedure for derivation of the
equation (12) with p(t) inserted directly in the solution
is, nevertheless, not satisfactory as well. The two above
possibilities should be considered as two extremes for
the shapes of p(t).

Strictly speaking, the behavior of p(t) should be
taken into account primarely inside the integral. Then,
inserting the expression (9) in place of p; in Eq. (6) and
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integrating by parts we derive the following linear inte-
gral equation

ImA(z) = ZL\/% X

+o0 2
< [ aye e 0505 + gy - 2)yllmA(y) (13

— 00

with F(p,0) = 0 and new variables z = +/B/2pb;
y =/ B/2pb;.

The kernel of this equation is not symmetrical. Its
solution has not yet been obtained even numerically.
However, one can get some preliminary asymptotical es-
timates from it.

In the preasymptotical energy region we got [3] the
Orear regime ImA o exp(—apf) =~ exp(—ap;) with the
exponential fall off of the amplitude as a function of an-
gles. Therefore, let us look for the solution of the equa-
tion (13) in the form ImA(z) = exp(—az+/2/B)¢(z).
The Gaussian exponent shifts to z — y — a/\/ﬁ. Re-
placing it by the d-function with this argument, one gets
the equation in the finite differences

2
b(z) = Z tea’/2B [1 +0.503 (1 + % - apt>] X

xqﬁ(z—\/%_B). (14)

Again, we can not solve it directly but get the impor-
tant conclusion about the zeros of the imaginary part of
the amplitude. The expression in the square brackets is
equal to zero at

2

5
apy

Pro = —5[1+ 0.503(1 + a*/B)] ~ (15)
apyp

With the present day values of B, a, p3 this zero would
appear at extremely large p;o ~ 20 GeV. However, ze-
ros of the imaginary part of the amplitude in the Orear
region just above the diffraction cone might appear as
zeros of ¢(z) itself. This result does not contradict to
the above statement about absence of zeros in case of
small oscillatory terms in the solution of the homoge-
neous linear integral equation.

Moreover, the equation tells us that ¢(z) and, conse-
quently, the imaginary part of the amplitude may pos-
sess zeros at T, = xo + %. On the p;-axis these zeros
would be placed at rather short distances one from an-
other.

In view of smallness of terms proportional to p2 in
Eq. (13) the effective values of a in the Orear region
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hardly change very much compared to Eq. (11) with ef-
fective p; being rather close to —py with the factors of
the order of 1, i.e. closer to (10) than to (12). Then the
black disk limit with Z tending to 0.5 would ask (see
Ref. [12]) for the oscillatory behavior of the imaginary
part of the amplitude, i.e. to zeros of ¢(z) appearing in
the Orear region.

Let us remind that this limit implies an important
asymptotical relation between the total cross section and
the diffractive slope

oy = 87 B. (16)

At 7 TeV the coefficient in front of B is still twice
smaller. However, if the preasymptotical power-like in-
crease of the total cross section accompanied by a slower
rise of the slope persists, the tendency to this limit is
promising.

However, it is premature to make the final conclusion
until the exact solution of the equation (13) is obtained.

To conclude, the unitarity condition provides impor-
tant predictions and information about the behavior of
the elastic scattering amplitude outside the diffraction
cone at present energies and in asymptotics. However,
further studies are needed to seek the solution of the
equation with the nonsymmetrical kernel first derived
above.
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