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 2012 September 10Asymptotics and zeros of the imaginary part of the elastic scatteringamplitudeI.M.DreminLebedev Physical Institute, 119991 Moscow, RussiaSubmitted 10 July 2012The s-channel unitarity condition for the imaginary part of the hadronic elastic scattering amplitude outsidethe di�raction peak is studied within di�erent assumptions about the behavior of its real part. The integralequation for the imaginary part is derived with the asymptotical expression for the real part inserted in theunitarity condition. The conclusions about the asymptotical approach to the black disk limit and possiblezeros of the imaginary part of the amplitude are obtained. Their relation to the present day experiments isdiscussed.The properties of high energy elastic scattering ofhadrons are well studied in experiment. Both the energybehavior and the dependence on transferred momentaof the di�erential cross sections are analyzed. Despitemany proposed theoretical models, no satisfactory de-scription of the whole sample of experimentally observedfeatures has yet appeared. Most models are purely phe-nomenological and deal with some sets of adjustable pa-rameters.The only rigorous requirement imposed on the elasticscattering amplitude follows from the unitarity conditionSS+ = 1 mandatory for the S-matrix in any �eld theory.However, in absence of equations of fundamental theory,one has to use it within de�nite assumptions and in lim-ited regions of kinematical variables to get any reliableconclusions. In particular, it can be exploited for ob-taining some results concerning the behavior of the realand imaginary parts of the elastic scattering amplitude.In general, the unitarity condition for the elastic scat-tering amplitude A(p; �) is written in a formImA(p; �) = I2(p; �) + F (p; �) = 132�2 �ZZ d�1d�2 sin �1 sin �2ImA(p; �1)ImA(p; �2)(1+�1�2)p[cos �� cos(�1+�2)][cos(�1��2)� cos �]+ F (p; �): (1)Here, p and � denote the momentum and the scatteringangle in the center of mass system. �i's take into ac-count the real parts at the corresponding angles. Theregion of integration over angles in Eq. (1) is given bythe conditionsj�1 � �2j � �; � � �1 + �2 � 2� � �: (2)The integral term represents the two-particle interme-diate states of the incoming particles. The functionF (p; �), called following Ref. [1] as the overlap function,

represents the shadowing contribution of the inelasticprocesses to the elastic scattering amplitude. It deter-mines the main structure in the shape of the di�ractionpeak and is completely non-perturbative so that onlysome phenomenological models pretend to describe it.Therefore, the unitarity condition is practically uselessat very small angles but can be e�ectively used outsidethe di�raction cone as we show below.The elastic scattering proceeds mostly at small an-gles. The di�raction peak has a Gaussian shape in thescattering angles or exponentially decreasing as the func-tion of the transferred momentum squaredd�dt �d�dt ��1t=0 = eBt � e�Bp2�2 : (3)The four-momentum transfer squared ist = �2p2(1� cos �) � �p2�2 � �p2t ; (4)where pt is the transverse momentum. At large energiesthe forward scattering amplitude has a small real part asknown both from experiment and from the dispersion re-lations. Then the elastic scattering in this region labeledby the subscript d can be described by the amplitudeAd(p; �) = 4ip2�te�Bp2�2=2(1� i�d) (5)with a proper optical theorem normalization in the for-ward direction to the total cross-section �t and a smallcorrection due to the real part.Now, let us consider the integral term I2 outside thedi�raction peak. Because of the sharp fall o� of theamplitude (5) with angle, the principal contribution tothe integral arises from a narrow region around the line�1 + �2 � �. Therefore one of the amplitudes should beinserted at small angles within the cone while anotherone is kept at angles outside it. Thus, inserting Eq. (5)for one of the amplitudes in I2 and integrating over one�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 5 { 6 2012 307



308 I.M.Dreminof the angles the inhomogeneous linear integral equationis obtained: ImA(p; �) = p�t4�p2�B �� Z +1�1 d�1e�Bp2(���1)2=2(1 + �d�l)ImA(p; �1) ++ F (p; �): (6)It can be solved analytically (for more details see [2, 3])with the assumptions that the role of the overlap func-tion F (p; �) is negligible outside the di�raction cone1)and the real parts may be replaced by their average val-ues in the di�raction peak �d and outside it �l, corre-spondingly. Let us stress once more that the Gaussianshape (5) of the amplitude has been only used at rathersmall angles in accordance with experimental data.One gets the analytical solution as the eigenfunctionof the homogeneous integral equation with F (p; �)=0ImA(p; �) = C0(p)e�q2B ln Z1+�d�l p� ++ 1Xn=1Cn(p)e�[Rebn(p)]p� cos[jImbn(p)jp� � �n]; (7)where Z = 4�B=�t andbn �p2�Bjnj(1 + isignn); n = �1;�2; ::: (8)The solution contains the exponentially decreasingwith � (or pjtj) term (Orear regime!) with imposed onit damped oscillations.Note that the solution predicts the dependence onp� � pjtj but not the dependence on the collision en-ergy! There are no zeros on the t-axis unless the ampli-tudes of oscillations Cn(p) become extremely large.Namely this expression was successfully used to �tthe experimental data about the elastic scattering di�er-ential cross-section outside the di�raction cone (in theOrear regime region) at comparatively low energies inRef. [6] and in Ref. [4] at the LHC energy 7TeV. Inthe latter case, the value of Z = 4�B=�t is so closeto 1 at 7TeV that the �rst term is very sensitive tothe ratio �l outside the di�raction peak. Thus, it be-came possible for the �rst time to estimate �l from �tsof experimental data and it happened to be quite large(�l � �2:1). Concerning the ratio �d it was chosen asprescribed by the dispersion relations for its value att = 0 [7, 8] (�d = �0 � 0:14).Comparing the values of �d and �l, one is tempted tounderstand such a large di�erence between them. The1)The results of the papers [4, 5] give strong support to thisassumption.

only guess, we have at present, is obtained from the as-ymptotical formula derived in Ref. [9] which relates thebehaviors of the real and imaginary parts at nonzerotransferred momenta t in a following way�(t) = �0�1 + t[dImA(t)=dt]ImA(t) � : (9)This relation can be explicitly demonstrated now ifone uses the �rst term of the imaginary part of the scat-tering amplitude at �xed t < 0 given by Eq. (7) at �niteenergies and neglects other terms which decrease muchfaster with angles. The result is�(t) = �0(1� apjtj=2); (10)where a =s2B ln Z1 + �d�l : (11)We note that � passes through zero and changes signat jt0j = 4=a2. This agrees with the general theoremon the change of sign of the real part of the high-energyscattering amplitude which has been proven �rst in Ref.[10]. Estimates at 7TeV [4] show that jt0j � 0:3GeV2.However, this regime of the unlimited decrease of �with jtj does not look satisfactory. And really it can bedamped if one does not replace �(t) by its average valuein the Orear region �l but assumes that its t-dependencemay be left intact directly in the solution and di�erenti-ates it according to (9) inserting there the �rst term of(7). Then the following di�erential equation is obtaineddvdx = � vx � 2x2  Ze�v2 � 1�20 � 1! : (12)Here, x =p2Bjtj; v =pln[Z=(1 + �0�(t))].As awaited, the resulting shape of �(t) = (Ze�v2 �� 1)=�0 obtained as the solution of this equation [11]has a single zero at jt0j � 0:3GeV2 and, what is re-ally impressive, it steeply decreases in the Orear regionof 0:3 < jtj < 1:4GeV2 approaching the large nega-tive saturation value �(jtj ! 1) = �1=�0 � �7:25 (at7TeV) for high transferred momenta jtj (see Fig. 1 in[11]). Note that f� = 1 + �0�(t) tends to 0 there.The bold usage of this procedure for derivation of theequation (12) with �(t) inserted directly in the solutionis, nevertheless, not satisfactory as well. The two abovepossibilities should be considered as two extremes forthe shapes of �(t).Strictly speaking, the behavior of �(t) should betaken into account primarely inside the integral. Then,inserting the expression (9) in place of �l in Eq. (6) and�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 5 { 6 2012



Asymptotics and zeros of the imaginary part : : : 309integrating by parts we derive the following linear inte-gral equation ImA(x) = 1Zp� �� Z +1�1 dye�(x�y)2 [1 + 0:5�20 + �20(y � x)y]ImA(y) (13)with F (p; �) = 0 and new variables x = pB=2p�;y =pB=2p�1.The kernel of this equation is not symmetrical. Itssolution has not yet been obtained even numerically.However, one can get some preliminary asymptotical es-timates from it.In the preasymptotical energy region we got [3] theOrear regime ImA / exp(�ap�) � exp(�apt) with theexponential fall o� of the amplitude as a function of an-gles. Therefore, let us look for the solution of the equa-tion (13) in the form ImA(x) = exp(�axp2=B)�(x).The Gaussian exponent shifts to x � y � a=p2B. Re-placing it by the �-function with this argument, one getsthe equation in the �nite di�erences�(x) = Z�1ea2=2B �1 + 0:5�20�1 + a2B � apt���� ��x� ap2B� : (14)Again, we can not solve it directly but get the impor-tant conclusion about the zeros of the imaginary part ofthe amplitude. The expression in the square brackets isequal to zero atpt0 = 2a�20 [1 + 0:5�20(1 + a2=B)] � 2a�20 : (15)With the present day values of B; a; �20 this zero wouldappear at extremely large pt0 � 20 GeV. However, ze-ros of the imaginary part of the amplitude in the Orearregion just above the di�raction cone might appear aszeros of �(x) itself. This result does not contradict tothe above statement about absence of zeros in case ofsmall oscillatory terms in the solution of the homoge-neous linear integral equation.Moreover, the equation tells us that �(x) and, conse-quently, the imaginary part of the amplitude may pos-sess zeros at xn = x0+ ap2B . On the pt-axis these zeroswould be placed at rather short distances one from an-other.In view of smallness of terms proportional to �20 inEq. (13) the e�ective values of a in the Orear region

hardly change very much compared to Eq. (11) with ef-fective �l being rather close to ��0 with the factors ofthe order of 1, i.e. closer to (10) than to (12). Then theblack disk limit with Z tending to 0.5 would ask (seeRef. [12]) for the oscillatory behavior of the imaginarypart of the amplitude, i.e. to zeros of �(x) appearing inthe Orear region.Let us remind that this limit implies an importantasymptotical relation between the total cross section andthe di�ractive slope �t = 8�B: (16)At 7 TeV the coe�cient in front of B is still twicesmaller. However, if the preasymptotical power-like in-crease of the total cross section accompanied by a slowerrise of the slope persists, the tendency to this limit ispromising.However, it is premature to make the �nal conclusionuntil the exact solution of the equation (13) is obtained.To conclude, the unitarity condition provides impor-tant predictions and information about the behavior ofthe elastic scattering amplitude outside the di�ractioncone at present energies and in asymptotics. However,further studies are needed to seek the solution of theequation with the nonsymmetrical kernel �rst derivedabove.This work was supported by the RFBR grant #12-02-91504-CERN-a and by the RAN-CERN program.1. L. Van Hove, Nuovo Cimento 28, 798 (1963).2. I. V. Andreev and I.M. Dremin, Pis'ma v ZhETF 6, 810(1967).3. I. V. Andreev and I.M. Dremin, Sov. J. Nucl. Phys. 8,473 (1968).4. I.M. Dremin and V.A. Nechitailo, Phys. Rev. D 85,074009 (2012).5. I. V. Andreev, I.M. Dremin, and D.N. Steinberg, Sov.J. Nucl. Phys. 11, 261 (1970).6. I. V. Andreev, I.M. Dremin, and I.M. Gramenitskii,Nucl. Phys. 10, 137 (1969).7. I.M. Dremin and M.T. Nazirov, Pis'ma v ZhETF 37,163 (1983).8. M. Block and F. Halzen, arXiv:1102.3163.9. A. Martin, Lett. Nuovo Cim. 7, 811 (1973).10. A. Martin, Phys. Lett. B 404, 137 (1997).11. I.M. Dremin, arXiv:1204.1914.12. I.M. Dremin, Nucl. Phys. A 888, 1 (2012).�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 5 { 6 2012


