Возможное обнаружение легких нейтронных ядер в делении ²³⁸U α-частицами

Б. Г. Новацкий, Е. Ю. Никольский, С. Б. Сакута¹⁾, Д. Н. Степанов

Национальный исследовательский центр "Курчатовский институт", 123182 Москва, Россия

Поступила в редакцию 17 июля 2012 г.

Методом активации проведен поиск ядерно-стабильных мультинейтронов среди продуктов деления 238 U α -частицами с энергией 62 МэВ. Для идентификации ядерно-стабильных мультинейтронов использовалась реакция передачи 4 нейтронов на изотопе 88 Sr: 88 Sr(^{x}n , (x - 4)n) 92 Sr \rightarrow 92 Y. В измеренных γ -спектрах облученного образца обнаружена линия с энергией E = 1384 кэВ, что вместе с измеренной временной зависимостью спада ее активности указывает на образование β -активного ядра 92 Sr. Полученный результат воспроизводится в повторных измерениях. Он свидетельствует о возможном существовании ядерно-стабильных мультинейтронов (^{x}n) с $x \ge 6$. Дифференциальное сечение выхода ^{x}n под углом 30° в делении 238 U α -частицами составило $\sim 6 \cdot 10^{-2}$ мб/ср.

1. Введение. Проблема стабильности ядер, состоящих из одних нейтронов, давно является предметом интенсивных экспериментальных и теоретических исследований [1-7]. Интерес к этой проблеме понятен, поскольку открытие нейтронных ядер имело бы далеко идущие последствия не только для ядерной физики, но и для астрономии. Открытие нейтронных звезд явилось крупнейшим событием второй половины XX века. Однако на микроскопическом уровне убедительных свидетельств существования нейтронных ядер до сих пор не получено. Современные знания о них ограничены лишь длиной пп-рассеяния, т.е. динейтроном, недосвязанным всего на 70 кэВ. Пятидесятилетняя история экспериментальных исследований, казалось бы, свидетельствует о том, что ядерно-стабильных и даже квазистационарных состояний легких нейтронных ядер ³n [4,5] и 4n [4,6,7] не существует. Поиски xn в спонтанном делении ²⁵²Cf методом активации также не привели к положительному результату [8]. И все же интерес к мультинейтронным системам вновь возрос после сообщений об обнаружении в экспериментах на радиоактивных пучках ¹⁴Ве и ⁸Не ядерностабильного тетранейтрона [9,10]. Авторы указанных работ сообщили о регистрации около десятка событий, которые были приписаны существованию связанного тетранейтрона (4n). Независимо в НИЦ "Курчатовский институт" были проведены исследования реакций ⁷Li(⁷Li, ¹¹C)3n и ⁷Li (⁷Li, ¹⁰C)4n под малыми углами (2°) [11] с использованием магнитного сепаратора МАСЭ. Регистрация ядер углерода осуществлялась телескопом кремниевых $\Delta E - E$ де-

Укажем на аналогию n-n-систем с Λ -гиперонными ядрами. Известно, что сильно взаимодействующие нейтральные Λ -гипероны не образуют связанного состояния гиперводорода $(\Lambda - p)$, но Λ -тритон $({}^{3}{\rm H}_{\Lambda})$ уже устойчив (энергия связи $\varepsilon = 0.13$ МэВ). С увеличением атомного номера гиперядер энергия связи гиперона увеличивается вплоть до кальция ($\varepsilon = 20$ МэВ).

Степень устойчивости гипотетических мультинейтронов с $A \ge 6$ можно грубо оценить из экстраполяции зависимости энергии связи двух последних нейтронов в изотопах гелия (⁵He-¹⁰He). Два последних нейтрона в ядрах ⁶He, ⁸He связаны ($\varepsilon = 0.96$ и 2.2 МэВ соответственно), тогда как ¹⁰He уже неустойчив на 1.2 МэВ [12]. Подобная тенденция имеет место и для нечетных нестабильных изотопов ⁵He и ⁷He. Увеличение энергии связи нейтронноизбыточного изотопа ⁸He можно объяснить полностью запол-

текторов, включенных в схему многомерного анализа. Высокая интенсивность пучка ионов ⁷Li и большая селективность схем анализа продуктов реакций $(\Delta E - E, E - t)$ дали существенное преимущество перед методикой, использованной в работах [9, 10]. Тем не менее ни связанного, ни квазистационарного 4n обнаружить не удалось [11]. В этой работе была получена рекордная величина верхней границы сечения образования ${}^{4}n$, равная 0.1 нб/ср. Это позволяет с большим скептицизмом отнестись к выводу о существовании ядерно-стабильного состояния 4n . Тем не менее отсутствие связанного тетранейтрона не исключает ядерной стабильности более тяжелых нейтронных кластеров (⁶n, ⁸n и т.д.). Следовательно, их поиск по-прежнему остается актуальной задачей ядерной физики.

¹⁾e-mail: sbsakuta@mail.ru

ненными оболочками $1s_{1/2}$ и $1p_{3/2}$, т.е. существованием магического числа 6 по нейтронам, а не 2 и 8, как это наблюдается у обычных ядер. Отсюда можно ожидать ядерной стабильности системы из шести нейтронов. Отметим, что еще в классических работах А.И.Базя [1] подчеркивалось, что небольшие изменения ядерного потенциала не влияют на результаты фазового анализа и на энергии связи обычных нейтроноизбыточных ядер. Однако они могут стабилизировать нейтронные ядра, начиная с $A \sim 60$. Следовательно, отрицательные результаты многочисленных поисков нейтронных ядер $^2n-^4n$ не исключают возможности существования связанных состояний xn с $x \geq 6$. Таким образом, данная фундаментальная задача ядерной физики по-прежнему актуальна.

Целью настоящей работы и является поиск легких нейтронных ядер ${}^{x}n$ с $x \ge 6$ методом активационного анализа в реакциях передачи четырех нейтронов.

2. Эксперимент. Поиски мультинейтронов на ускорителях требуют больших энергий бомбардирующих частиц, так как все реакции (кроме деления), в которых возможно образование нейтронных ядер, сильно эндотермичны. Эндотермичность реакции резко увеличивается с увеличением массы нейтронного ядра. Поэтому нами выбран "удобный" источник нейтронных ядер – тройное деление ²³⁸U *а*частицами. При энергиях *α*-частиц в несколько десятков МэВ (нами использовался пучок *α*-частиц с энергией 62 МэВ) кинетическая энергия осколков вынужденного деления существенно превышает кулоновский барьер. Известно, что вылет легких частиц наиболее вероятен из шейки делящегося ядра, сильно обогащенной нейтронами. Установлено, что в делении, помимо тяжелых осколков, с вероятностью около 1% наблюдаются выходы изотопов водорода, гелия, лития и т.д., среди которых имеются изотопы, обогащенные нейтронами [13]. Поэтому естественно ожидать и вылета чисто нейтронных ядер, если они существуют. Грубые оценки показывают, что нейтронные ядра могут вылетать с $A \leq 30$ с наиболее вероятной энергией ~1 МэВ/нейтрон.

Нами был выбран активационный метод поиска мультинейтронов. Их идентификация осуществлялась по реакциям передачи нескольких нейтронов ядрам активируемой мишени. Такие реакции можно записать как прямой процесс передачи нейтронов, ${}^{N}A({}^{x}n, (x-k)n)^{N+k}A$, или как образование составного ядра с последующим испарением x-k-нейтронов, ${}^{N}A+{}^{x}n \rightarrow {}^{N+x}A \rightarrow {}^{N+k}A+(x-k)n$, где ${}^{N+k}A$ – образующийся в результате данной реакции β -активный изотоп. Выбор конкретного изотопа диктуется приемлемым для измерений периодом его полураспада

Письма в ЖЭТФ том 96 вып. 5-6 2012

 $(T_{1/2} = (2-24)$ ч), а также наличием у него интенсивных γ -линий в диапазоне энергий, оптимальном для регистрации полупроводниковым Ge-детектором.

Первичной мишенью служила пластина ²³⁸U толщиной 160 мкм, которая устанавливалась в центре камеры рассеяния. Мишень бомбардировалась пучком а-частиц с энергией 62 МэВ, выведенным из изохронного циклотрона НИЦ "Курчатовский институт". Для отвода тепла от фольги ²³⁸U использовалось водяное охлаждение. Активируемые образцы в виде порошка SrCO₃ с обогащением по изотопу $^{88}{
m Sr}\,99.2\%$ и массой 4.59 г помещались в герметичный контейнер, устанавливаемый в ту же вакуумную камеру рассеяния под углом 30° относительно пучка. Контейнер имел входное окно из каптона диаметром 30 мм и толщиной 0.1 мм. Телесный угол регистрации составлял $5 \cdot 10^{-2}$ ср. Для подавления фона рассеянных α -частиц, а также тритонов из реакции 238 U (α, t) перед образцами $SrCO_3$ устанавливался дополнительный фильтр из бериллия толщиной 1мм.

Регистрация γ -лучей проводилась на установке Низкофоновый γ -спектрометр с детектором из сверхчистого Ge объемом 120 см³. Для уменьшения влияния внешнего γ -фона от космического излучения и для подавления комптоновского рассеяния детектор помещался в пассивную (свинец толщиной 10 см) и активную (кольцевой кристалл NaJ(Tl) размером 30×30 см²) защиты. Энергетическое разрешение по линии ⁶⁰Co (E = 1333 кэВ) составляло 2.3 кэВ.

Выбор оптимальной активируемой мишени и числа переданных нейтронов из гипотетических мультинейтронов представляет далеко не однозначную задачу. Поэтому исследования проводились с большим набором обогащенных изотопов, включающим легкие (19 F, 25,26 Mg, 34,36 S), средние (45 Sc, 88 Sr, 93 Nb, ¹²⁷ J, ¹³⁰ Te) и тяжелые (²⁰⁸ Pb, ²⁰⁹ Bi) ядра. Многочисленными исследованиями была установлена непригодность реакций, в которых осуществляется передача двух или трех нейтронов, из-за вклада двухступенчатых процессов, идущих в интенсивных потоках быстрых нейтронов. Источником последних является реакция (α, n) на первичной мишени 238 U $(Q = -11.3 \,\mathrm{M} \,\mathrm{sB})$, генерирующая нейтроны вплоть до энергий в несколько десятков МэВ. В результате нее, например, на образце ²⁶Mg идут двухстадийные реакции с образованием радиоактивного ²⁸Mg: a) ${}^{26}\mathrm{Mg}(n, t)$, satem ${}^{26}\mathrm{Mg}(t, p){}^{28}\mathrm{Mg};$ 6) ${}^{26}\mathrm{Mg}(n, \alpha),$ затем ${}^{26}Mg(\alpha, 2p){}^{28}Mg$. Эти реакции имитируют передачу двух нейтронов на ядре магния, т.е. $^{26}{
m Mg}(^{x}n, (x-2)n)^{28}{
m Mg}$. Следовательно, идентификация ${}^{x}n$ по активности радионуклида 28 Mg становится неприемлемой.

С особой осторожностью следует относиться к возможным примесям и загрязнениям в исследуемых образцах. Так, наличие микроскопических примесей натрия и алюминия в облучаемых образцах фторопласта (C₂F₄) сделало невозможным поиск ^xn по γ линиям ²⁴Na (E = 1369 и 2754 кэВ), искомого в реакции передачи пяти нейтронов ¹⁹F(^xn, (x-5)n)²⁴F \rightarrow \rightarrow ²⁴Ne \rightarrow ²⁴Na. В этом случае образование ²⁴Na маскируется паразитными реакциями ²³Na(n, γ)²⁴Na и ²⁷Al(n, α)²⁴Na. Более детальное рассмотрение роли двухступенчатых процессов и чистоты активируемых мишеней будет дано в следующей публикации.

В результате для поиска легких нейтронных ядер в делении ²³⁸U α-частицами была выбрана реакция передачи четырех нейтронов на изотопе стронция: ${}^{88}{
m Sr}({}^xn,\,(x{-}4)n){}^{92}{
m Sr}\,\,
ightarrow\,{}^{92}{
m Y}.$ Мишень (${}^{88}{
m Sr}{
m CO}_3$) облучалась в вакуумной камере рассеяния в течение 7 ч при токе ионов гелия I = 1 мкА. В связи с большой активностью в кабине, где облучались образцы, их перенос в спектрометр осуществлялся после выдержки 0.5 ч. Время измерения активности облученных образцов составляло 20ч с выводом промежуточных спектров вначале через один час, а затем через два-три часа. Для долгоживущих изотопов измерения продолжались в течение 48 ч. Идентификация ү-линий осуществлялась по их энергиям, периодам полураспада и по соотношениям интенсивностей в измеряемых спектрах.

На рис. 1
а приведен спектр γ -квантов облученного образца $^{88}{\rm SrCO_3},$ набранный за
 2.5 ч. Стрел-

Рис. 1. (а) – Измеренный спектр γ -квантов образца $^{88}{
m SrCO_3}$, облученного продуктами деления $^{238}{
m U} + \alpha$ (показаны основные линии; см. текст). (b) – выделенный участок γ -спектра в диапазоне энергий 1300–1500 кэВ. Стрелкой отмечена γ -линия $^{92}{
m Sr}(1384$ кэВ)

ками показаны основные линии в спектре: 388 кэВ (87 Sr, $T_{1/2} = 2.8$ ч); 478 кэВ (7 Be, $T_{1/2} = 53$ дня); 511 кэВ; γ -линии 898, 1836, 2734 кэВ (88 Y, $T_{1/2} =$

= 106 дней); 1077 кэВ (⁸⁶Y, $T_{1/2} = 14.7$ ч); 1369 кэВ (²⁴Na, $T_{1/2} = 15$ ч); 2677 кэВ (⁸⁸Rb, $T_{1/2} = 17.8$ мин); 1384 кэВ (⁹²Sr, $T_{1/2} = 2.7$ ч). На рис.1b приведен выделенный участок того же спектра, в котором отмечена линия ²⁴Na 1369 кэВ, образующаяся на примеси (10⁻²%) магния в мишени из реакции ²⁴Mg(n, p)²⁴Na (Q = -4.73 МэВ). В набранном спектре надежно зарегистрирована и γ -линия с $E = 1384 \pm$ ± 0.5 кэВ, которая может быть приписана образованию искомого ядра ⁹²Sr в реакции передачи 4 нейтронов ⁸⁸Sr(^xn, (x-4)n)⁹²Sr. (Табличные данные для изотопа ⁹²Sr соответствуют E = 1383.9 кэВ, $T_{1/2} =$ = 2.66ч, I = 90%.)

Повторные опыты подтвердили наличие пика с $E = 1384 \,\mathrm{k}$ в и позволили измерить зависимость его интенсивности от времени. Эта зависимость приведена на рис. 2. Штриховой линией на рисунке пока-

Рис. 2. Зависимость суммы в пике для γ -линии E = 1384 кэВ от времени (продолжительность каждого измерения 10^4 с). Штриховая линия – экспоненциальный спад для табличного значения периода полураспада $T_{1/2} = 2.66$ ч

зан ожидаемый спад активности для табличного значения $T_{1/2} = 2.66$ ч, что в пределах ошибок согласуется с экспериментальными данными.

Для исключения других каналов образования ⁹²Sr на возможных примесях в активируемом образце или в экзотических реакциях с нейтронами больших энергий при взаимодействии ²³⁸U + α были выполнены контрольные эксперименты с первичной мишенью ¹⁸¹Ta толщиной 100 мкм. Энергии (α , n)реакций на ²³⁸U (Q = -11.3 МэВ) и ¹⁸¹Ta (Q == -9.9 МэВ) сравнимы. Значит, энергетические спектры нейтронов будут подобны. На рис. За приведен γ -спектр образца ⁸⁸SrCO₃, измеренный после облучения α -частицами тантало-

Рис. 3. (а) – Измеренный спектр γ -квантов образца ${}^{88}{
m SrCO_3}$, облученного продуктами взаимодействия ${}^{181}{
m Ta} + \alpha$. (b) – Выделенный участок γ -спектра в диапазоне энергий 1300–1500 кэВ (обозначения те же, что и на рис. 1b)

вой фольги. Облучение проводилось в тех же условиях и с тем же интегралом тока, что и для урана. В данном спектре зарегистрированы все интенсивные γ -линии, отмеченные на рис. 1а. Однако линии E = 1384 кэВ, как это видно на выделенном участке спектра (рис. 3b), не наблюдается. Таким образом, измерения на тантале исключили образование изотопа 92 Sr под действием различных фоновых реакций. Отсюда можно заключить, что γ -линия E = 1384 кэВ, скорее всего, связана с реакцией передачи 4 нейтронов, 88 Sr(^{x}n , (x-4)n) 92 Sr. Она свидетельствует о возможном образовании и эмиссии ядерно-стабильных мультинейтронов ^{x}n с $x \ge 6$ при взаимодействии α -частиц с 238 U.

Оценим сечение вылета мультинейтронов при взаимодействии ²³⁸U + α . Для этого вначале рассчитаем количество образовавшихся ядер $N(^{92}Sr)$ после окончания облучения по формуле

$$\mathbf{N}(^{92}\mathrm{Sr}) = S_{1384} / \{ \varepsilon \cdot (I/100) \cdot [\exp(-\lambda t_s) - \exp(-\lambda t_f)] \},\$$

где S_{1384} – количество отсчетов в пике E = 1384 кэВ, ε – эффективность регистрации, I – интенсивность указанной γ -линии (90%), $\lambda = 0.693/2.66$ ч⁻¹ – константа распада, t_s и t_f – времена начала и конца измерения, отсчитываемые от момента конца облучения.

Предполагая, что дифференциальное сечение передачи 4 нейтронов под углом $30^{\circ} d\sigma_{4n}/d\Omega = 100 \,\mathrm{m6/cp}$, оценим поток мультинейтронов $\Phi(^xn)$, падающий на входное окно образца:

$$\Phi({}^{x}n) = N({}^{92}\mathrm{Sr}) / \{N({}^{88}\mathrm{Sr}) \cdot d\sigma_{4n} / d\Omega \cdot \Omega[1 - \exp(-\lambda t_{\mathrm{rad}})]\}$$

Письма в ЖЭТФ том 96 вып. 5-6 2012

где $N(^{88}{
m Sr})$ – количество ядер $^{88}{
m Sr}$ в образце $^{88}{
m SrCO}_3$, Ω – телесный угол, $t_{\rm rad}$ – время облучения. Тогда дифференциальное сечение образования мультинейтронов можно получить из выражения

$$d\sigma_{xn}/d\Omega = \Phi(^{x}n)/[\Phi(^{4}\text{He}) \cdot N(^{238}\text{U}) \cdot \Omega],$$

где $\Phi(^{4}\text{He})$ – интегральный поток α -частиц, $N(^{238}\text{U})$ – количество ядер в ^{238}U -мишени. Дифференциальное сечение выхода ^{x}n под углом 30° из реакции $^{238}\text{U}(\alpha, {}^{x}n)$ составило $\sim 6 \cdot 10^{-2} \text{ мб/ср.}$

3. Заключение. В настоящей работе методом активации проведен поиск легких нейтронных ядер xn с $x \ge 6$ в делении $^{238}\mathrm{U}$ lpha-частицами при энергии 62 МэВ. Исследован ряд гипотетических реакций ${}^{N}A({}^{x}n, (x-k)n)^{N+k}A$ с передачей нескольких нейтронов (от двух до пяти) активируемым мишеням. В качестве активируемых образцов использовались легкие (¹⁹F, ^{25,26}Mg, ^{34,36}S), средние (⁴⁵Sc, ⁸⁸Sr, ⁹³Nb, ¹²⁷J, ¹³⁰Te) и тяжелые (²⁰⁸Pb, ²⁰⁹Bi) ядра. Идентификация мультинейтронов осуществлялась по *β*-распаду искомых изотопов с последующим излучением характерных ү-квантов. При облучении обогащенного изотопа ⁸⁸Sr продуктами деления 238 U α -частицами обнаружена γ -линия с E == 1384 кэВ, которая, согласно табличным данным, соответствует образованию β-активного ядра ⁹²Sr с периодом полураспада $T_{1/2} \sim 2.66$ ч. Образование этого ядра приписано реакции передачи четырех нейтронов с участием ядерно-стабильного мультиней трона: 88 Sr $({}^{x}n, (x-4)n)^{92}$ Sr. Для подтверждения полученного результата необходимы дальнейшие опыты с более тяжелыми бомбардирующими частицами (¹¹B, ¹²C) и с другими активируемыми мишенями.

В настоящее время теория атомных ядер не может однозначно ответить на вопрос о том, существуют ли ядра, состоящие из одних нейтронов. В данной экспериментальной работе получено свидетельство существования таких ядер с массой $A \ge 6$. Это открывает новые перспективы в получении и исследовании экзотических нейтронных систем вплоть до микроскопических нейтронных капель.

- А.И. Базь, В.И. Гольданский, В.З. Гольдберг, Я.Б. Зельдович, Легкие и промежуточные ядра вблизи границы нейтронной стабильности, М.: Наука, 1972.
- S. Fiarman and S.S. Hanna, Nucl. Phys. A 251, 1 (1975).
- Д. В. Александров, Е. Ю. Никольский, Б. Г. Новацкий, Д. Н. Степанов, Письма в ЖЭТФ 67(11), 860 (1998).
- J. Cerny, R. B. Weisenmiller, N. A. Jelley et al., Phys. Lett. B 53, 247 (1974).

- J. A. Ungar, R. D. McKeown, D. F. Geesaman et al., Phys. Lett. B 144, 333 (1984).
- Д. В. Александров, Ю. А. Глухов, Е. Ю. Никольский и др., ЯФ 47, 3 (1988).
- F. W. N. de Boer, R. van Dantzig, M. Daum et al., Phys. Rev. Lett. 53, 423 (1984).
- Д. В. Александров, Е. Ю. Никольский, Б. Г. Новацкий, Д. Н. Степанов, ЯФ 52, 933 (1990).
- F. M. Marques, M. Labiche, N. A. Orr et al., Phys. Rev. C 65, 044006 (2002).
- B. Virginie, F. M. Marques, F. Hanappe et al., Proc. Intern. Symposium Exotic Nuclei, Peterhof, Russia, July 5-12, 2004; Yu. E. Penionzhkevich and E. A. Cherepanov (eds.), World Scientific, Singapore, 2005, p. 29.
- 11. Д. В. Александров, Е. Ю. Никольский, Б. Г. Новацкий и др., Письма в ЖЭТФ **81**(2), 49 (2005).
- 12. A. A. Korsheninnikov, K. Yoshida, D. V. Aleksandrov et al., Phys. Lett. B **326**, 31 (1994).
- V. A. Rubchenya, W. H. Trzaska, and E. Vardaci, Int. J. Mod. Phys. E 18, 830 (2009).