Pis’ma Zh.Eksp.Teor.Fis, Vol. 53, No 5, pp. 263 - 268 ' March 10,1991

Transition between Nonsingular Vortices in
Superfluid SHe-A at Zero Magnetic Field

K. Torizuka,V) J.P. Pekola, 1) A.J. Manninent)
and G.E. Volovik ¥

DLow Temperature Laboratory, Helsinki University of Technology,
02150 Espoo, Finland
L.D. Landau Institute for Theoretical Physics, USSR Academy of Sciences,
117334 Moscow, USSR

Submitted 12 February 1991

Rotating *He-A in zero magnetic field exhibits a new first order phase transition,
discovered by ultrasonic measurements at high angular velocity . ~ 3 rad/s. A
possible mechanism of the observed phase change, related to the surface vortex
layer, is discussed.

Two types of continuous vortices have been resolved recently by ultrasonic
experiments in *He-A.! In both cases the singularity in the phase of the Bose-
condensate is unwound owing to tne nontrivial topology of the orbital [-vector
texture w1th1n the soft vortex core. The tmy spin-orbital (dipolar) coupling
between [ and the magnetic anisotropy vector d is responsible for the difference
between these vortices. In a low magnetlc field, H < Hg, where Hd is the
dipolar field of order 2 - 5 mT, the d—texture is dipole-locked with the [vector
and thus follows the nontrivial topology of l while in higher fields d is unlocked
and has a trivial topology. The high-field doubly quantized vortex, with a soft
core on the order of the dipolar length £; ~ 10 um, was extensively studied in
NMR experiments.? The first order phase transition between the dipole-locked
and dipole-uniocked nonsingular vortices occurs at H = H. = 1.4 mT ~ Hy
irrespective of angular velocity €2, at least when 1 is in the experimental range
between 0 and 3.5 rad/s.!

In the present ultrasonic experiment we found another transition in low fields
H < Hy, i.e., in the region of the dipole-locked vortices. This change takes place
at a relatively high Q: when H = O the critical velocity {2, ~ 3 rad/s. Our
experimental set-up has been described in 1 In the present study we measured
the attenuation o(Q2) of ultrasound pulses at 26.8 MHz frequency, propagated
along the axis of the cylindrical experimental cell (radius R = 3 mm, height L =
4 mm), which was rotated around its axis in our ROTAZ2 cryostat.

The new transition, seen in a(02), has a number of characteristic but puzzling
features:

1. The transition is of first order since hysteresis is observed (see Fig. 1). The
attenuation curve while decelerating does not follow the curve during acceleration,
the latter exhibits a reproducible pronounced change at 2 = {.. The hysteresis
indicates that the low-velocity vortices are unstable against high-velocity vortices
at 1 > (1., but that the latter are metastable and prevail during deceleration even
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when 1 < (1,. Other sharp features of the a(1) curve in Fig. 1 are not related
to the new transition: i) The peak downwards at the beginning of acceleration is
due to counterflow between the normal and superfluid components before vortices
are created; ii) after stopping the cryostat the attenuation increases because the
orienting effect of vortices on the I“texture disappears.
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Fig. 1. Attenuation of 26.8 MHz ultrasound in an acceleration-deceleration cycle.
Magnetic field H ~ 0 {< 0.1 mT), pressure p = 26.0 bar, and the normalized
temperature T /T, = 0.90 , where T, = 2.4 mK corresponds to the superfluid
transition. The rotation velocity ({2) is shown vs. time in (a); the corresponding
attenuation is seen in (b). Here cr) is the attenuation level in a strong magnetic
field (H > Hy) at {1 = 0, when [ is perpendicular to the propagation of ultrasound.
The transition at {). ~ 3 rad/s was clearly seen in all our experimental runs

2. The transition is seen both in measurements during which attenuation
is monitored under continuous acceleration (see Fig. 1) and in start-and-stop
experiments (see Fig. 2). In the latter method the cryostat was repeatedly
accelerated to various final velocities {1y at which attenuation was recorded.

3. The ultrasound attenuation has a plateau below Q. for the low-velocity
vortices, while for the high-velocity vortices the attenuation always decreases with
decreasing (1, even below {1..

4. 1., as measured from start-and-stop experiments, increases from = 3 rad/s
to 3.5 rad/s when the pressure is increased from 26.0 bar to 29.3 bar.

In the rest of this paper we discuss our understanding of this transition.

The first order phase change, with a clear metastability of the high-velocity
vortices below (1, and with instability of the low-velocity vortices above (1, rules
out an explanation in terms of a transition from the non-singular dipcle-locked
vortices, which should exist at low {2, to singular vortices, which should be present
at very high angular velocities (~ 30 rad/s according to ®). We believe that it is

264



much more difficult to create singular vortices from a continuous texture, than
to produce continuous vorticity from singular vortices.
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Fig. 2. Ultrasound attenuation measured in start-and-stop experiments under
the same experimental conditions as in Fig. 1, T/T.=0.93

The fact that sound attenuation has a plateau for the low-velocity vortices
and increases with {1 for the high-velocity vortices (see Figs. 1 and 2) has two
consequences: i) For the low-velocity vortices, below 0., the Itexture has no
internal length scale (such as ¢;), except the size of the primitive vortex cell ry.
This corresponds to one of the possible periodic dipole-locked texiures without
an internal length scale,* which should exist in the absence of a magnetic field.
ii) The high-velocity vortices have an internal length scale, namely the size of
the region within the cell where I deviates from the orientation perpendicular to
. This rules out the possibility that the observed transition is between different
types of dipole-locked textures; besides, such a change cannot occur at a given 2
since the energy per unit cell does not depend on {1 in a vortex texture without
an internal length scale .

This leaves the possibility that the high-velocity vortices are dipole-unlocked
and nonsingular, i.e., the phase change is of the same origin as the topological
transition observed at H =~ Hy. To understand how the dipole-locked texture in
the bulk liquid can lose its stability by acceleration, we consider a scenario which
takes into account the fact that singularities are not easily created in a rotating
container. This was observed from NMR experiments on rotating 3He (see ® as
a review) which showed that it is difficult to create the singular B-phase vortices
and that nonsingular A-phase vortices are formed instead of the energetically

more advantageous singular vortices.
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Fig. 3. Schematic illustration of a comuletely non-singnlar vortex texture in the
cylindrical experimental vessel: {2} - Cross-sectional view of the experimental
chamber away from the end plates; there are Ny = 30 vortices in the bulk liquid
where they form a regular array; ihe same nuinber of opposiie vortices are in
the surface layer of thickness . These vortices form closed loops shown in (b)
for Ny = 4; vortex filaments are illugirated by thick lines with arrows along the
direction of vorticity, rot¥,, thin arrows indicate superflow around vortex lines



If it is a general rule that singularities in the order parameter are not created
in continuous processes, then one should reconsider the structure of the rotating
texture in the A-phase. The conventional wisdom that this state consists of a
regular array of doubly quantized nonsingular vortices suggests that there should
be alsc a regular array of point singularities in the Lvector field on the top and
bottom surfaces of the rotating container, these boojums® are the end points of
nonsingular vortices. This is, however, in contradiction with our requirement of
the absence of singularities in the rotating vessel.

Let us thus next consider a completely nonsingular distribution of the i-
texture, which has the minimum free energy in the rotating vessel. The absence
of singularities implies that there is no circulation of ¥, around the surface of
the vessel, i.e., while < §, > = {1 x 7 in the bulk liquid, one has < v, > = 0 at
the surface. The corresponding state is a regular array of conventional doubly
quantized vortices in the bulk liquid, with < ¥, > = €1 X ¥, accompanied by a
continuous vortex layer near the surfaces,® which compensates for the velocity
and produces the condition < ¢, > = 0 on the surface. This layer consists of

continuous vortices, whose number Ny is the same but whose circulation is oppo-
site to the bulk vortices to conserve the circulation (see Fig. 3a.) Therefore the
overall topological invariant for the I-texture is zero: J dzdy (l 3% d i) =0,
and the same is true for the d-vector field.

Physically the surface vortices are just a continuation of bulk vortices, when
the latter touch the top or the bottom of the rotating vessel, and propagate along
the end plates to the side, forming a vortex ring (see Fig. 3b). The vortices in
the surface layer are compressed since the width of this layer for the side walls
is” | = 2xR/Ny, where Ny = QXR%mg/h is the number of vortices in the surface
layer. Typically { = 2-107% cm for 2 = 1 rad/s and thus comparable to the
dipolar length. For the top and bottom plates I depends on the distance r from
the axis of the vessel: I(r) = h/(m3Qr).

Our ultrasonic experiments in zero field are not inconsistent with the existence
of this surface layer of vortices. During continuous acceleration, attenuation
caused by the dipole-locked vortices in the bulk liquid should be independent of
01, but instead a(2) reproducibly decreased with increasing {1 before reaching the
plateau in our start-and-stop experiments (see Fig. 2). The extra attenuation
at low velocities is related to the vortex layer on the top and bottom surfaces of
the vessel: the vortices in these layers are directed perpendicular to the sound
propagation and, therefore, the I-vector deviates from its transverse orientation
in the bulk liquid, producing the extra attenuation which decreases with Q since
the width of the vortex layer decreases as 1/Q0. Our estimate, using numerical
sound attenuation parameters® and the value of { from above, gives the correct
order of magnitude for the extra attenuation below ,.

Another feature to be compared with our model is the pressure dependence
of {2.. Because the transition should occur when I ~ £, we expect that ,
1s proportional to 1/£4. According to 8 1/£; increases about 15% when p is
increased from 26 to 29 bar, which agrees with the observed increase of (1, from
3 to 3.5 rad/s.
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The new phase transition at {2 ~ 3 rad/s may now be identified with the
dipole-locked — dipole-unlocked transition in vortices at the compressed surface
layer, since at this angular velocity the core size of the surface vortices is on
the order of the dipolar length, which makes the dipole-unlocked constant d-
field more advantageous. This transition then propagates to bulk vortices, which
absorb the expelled topological invariant of the d-field.
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