Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-120
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 96 (2012) | ISSUE 6 | PAGE 436
Nature of the quantum critical point as disclosed by extraordinary behavior of magnetotransport and the Lorentz number in the heavy-fermion metal YbRh2Si2
Abstract
Physicists are engaged in vigorous debate on the nature of the quantum critical points (QCP) governing the low-temperature properties of heavy-fermion (HF) metals. Recent experimental observations of the much-studied compound  YbRh2Si2 in the regime of vanishing temperature incisively probe the nature of its magnetic-field-tuned QCP. The jumps revealed both in the residual resistivity ρ0 and the Hall resistivity R H, along with violation of the Wiedemann-Franz law, provide vital clues to the origin of such non-Fermi-liquid behavior. The empirical facts point unambiguously to association of the observed QCP with a fermion-condensation phase transition. Based on this insight, the resistivities ρ0 and R H are predicted to show jumps at the crossing of the QCP produced by application of a magnetic field, with attendant violation of the Wiedemann-Franz law. It is further demonstrated that experimentally identifiable multiple energy scales are related to the scaling behavior of the effective mass of the quasiparticles responsible for the low-temperature properties of such HF metals.