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The mechanisms of instability, whose development leads to the occurrence of the collapse (blow up), have
been studied in the scope of the rotating shallow water flows with horizontal density gradient. Analysis shows
that collapses in such models are initiated by the Rayleigh—Taylor instability and two scenarios are possible.
Both the scenarios evolve according to a power law (to — t)”, where to is the collapse time, with v = —1, -2,
and v = —2/3, —1 for the isotropic and anisotropic collapses, respectively. The rigorous criterion of collapse

is found on the base of integrals of motion.

1. Introduction. Shallow water models are widely
used in the description of large-scale motions in the at-
mosphere, oceans, rivers, avalanches, etc. The need for
shallow water approximation arises in many physical sit-
uations when the typical horizontal scale of the motion
is much larger than the vertical dimension of the flow.

Besides geophysical fluid dynamics, the classical
shallow water models can be useful for studying certain
astrophysical phenomena. For example, a shallow water
analogue was used to describe both implosive phenom-
ena and the shock instability taking place in the collaps-
ing inner core prior to explosion of a protoneutron star
[1]. The shallow water model can also describe the dy-
namics of the tachocline of a star, as was done in [2] and
[3] for the tacholine of the Sun.

For shallow water flows, as well as for other nonlin-
ear systems, the problem of stability is central because
development of instability determines the possible final
regimes realized in the flows. Various scenarios of insta-
bility exist, and one of them is the collapse [4, 5]. This
phenomenon implies formation of finite-time singulari-
ties and is a rather universal mechanism by which insta-
bilities manifest themselves in nonlinear systems [6-12].

The basic premise of this paper assumes that devel-
opment of large-scale instability leads to disintegration
of flow and to occurrence of particle-like fluid fragments.
In next stages, these quasi-regular formations play a role
of structural elements from which it is possible to com-
pile an overall picture of the instability up to the final
stage when collapse initiating small-scale turbulence is
involved in the game.
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The main goal of this work is to study the self-similar
scenarios of collapses in rotating shallow water flows
with horizontal density gradient. Whether or not the
instability leads to collapse depends on the model speci-
ficity and initial conditions and it can be established on
the basis of integral criteria. For conservative models,
such criteria are commonly intimately related to inte-
grals of motion and open a simple way to study power
laws under which finite-time singularities form in flows.

2. Shallow water model with horizontally-
nonuniform density. We consider a two-dimensional
field model whose evolution is described by the equa-
tions

1
Oty + upOpu; — 2Qe;puy = Ehaﬂ' — 0i(hT), (1)

Oth + Ok (hux) = 0, (2)
Oy + up O = 0. (3)
Here, the notations are as follows: z; = (x1, x2) are
the Cartesian coordinates; 0; = 0/0¢t, 0; = 0/0x;
eir is the unit antisymmetric tensor, e;; = ez = 0,
e12 = —es1 = 1; u; are horizontal components of depth-

averaged velocity in layer; h is its thickness. Since Q is
constant angular velocity with which the layer is rotating
about the vertical axis, the term 2Qe;u implies compo-
nents of Coriolis acceleration. The physical significance
of field variable 7 depends on the model specification.
One of the simplest specifications [13] suppose that
the layer is bounded above by a vacuum (free boundary
condition). In this case 7 has meaning of the buoyancy
and is defined as 7 = g(1 + Ag/po), where g is gravity
and Ap is the density deviation from the background
value go. It must be emphasized that in this specifica-
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tion 7, just as the thickness h, is only a positive function
of the horizontal coordinates and time.

Note that in the case when Ap = 0, so that 7 = g is
constant, Eqgs. (1)—(3) reduce to the usual shallow wa-
ter equations describing motion under the influence of
gravity g.

The next specification removing the restriction 7 >
> 0 can be justified within the framework of two-layer
model. As shown in Figure, this model supposes that

z=1
)
/\/\/\/h
+ A
) Y R

The shallow water model with a relative buoyancy of al-
ternating sign

two incompressible fluids with densities gp and go + Ap
are separated by surface z = h(z1,x2,t) and contained
between two rigid parallel planes z = 0 and z = [. If
the horizontally-nonuniform density jump Ap between
the fluids is small and the lower layer is sufficiently thin,
so inequalities Ag/gyp < 1 and h/l < 1 hold, then the
shallow water approximation again leads us to Egs. (1)-
(3). These equations describe depth-averaged flow only
in the lower layer, but now the variable 7 = gAp/go is
the relative buoyancy and therefore may take any sign.

In those cases when density variations are produced
only by temperature ones AT and are linearly con-
nected, the relative buoyancy can be computed as 7 =
= —gBAT, where § is thermal expansion coefficient.
This parametrization allows to study heating and cool-
ing effects in shallow water models (see, as an example,
[14-16]).

In order to understand how the fluid moves as a
whole, it is helpful to consider the evolution of the center
of mass. Since integral of total mass

Q= /dxh, (4)

is constant, we can find directly from Egs. (1)—(3) that
coordinates of the center of mass X; and components of
the total momentum P; defined as

X; = Q‘l/dxhwi, P, = /dxhui,
are governed by the equations

0: X; = Qilpi, Ot P; = 2Q0e;, Py,. (5)
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Equations (5) can be easily integrated to obtain

P1 = PO Sll’l(2Qt), P2 = PO COS(2Qt), (6)
Py
X1 =Xo1 — —— 20
1 01 200 cos(202t), (7)
X = Xoz + 2 sin(204) (8)
2 = A02 200 sin )

where Xg1, Xo2 are integration constants, and the mod-
ulus of momentum Py = |P]| is the constant of motion.

Relations (7) and (8) say that, subject to Q@ =
= const # 0, the center of mass moves around a circle
of radius Py (2Q€)~! with constant angular velocity 2€2.

3. Integral criteria for collapses. Suppose that
the development of instability leads to the formation of a
singularity in a point. This means that with the lapse of
time, almost the entire fluid is localized in the vicinity of
this point. Thus, the collapse point coincides with the
center of mass and it is natural to describe collapsing
fluid fragments in the center of mass reference frame x’,
where the collapse point x' = 0 is immovable.

Since the primed and unprimed coordinates and ve-
locities are connected by the transformation

x=X+x, u=Q P+,

which leaves invariant Egs. (1)—(3), in order not to
change the notations, it is possible to put from the very
beginning that P =0 and X = 0.

As an indicator of the isotropic collapse, we will use
the positive definite integral

I= /dx hx?, (9)

which has a very simple physical meaning of the moment
of inertia with respect to the center of mass. Here and
elsewhere we will assume that integrals are taken over
the whole area occupied by a collapsing fluid fragment.

On the ground of Egs. (1)—(3), it is easy to show that
I and integrals

M:/dxh(wluz—zzul), V:/dxhziui,

which have meaning of the kinetic moment and the virial
for the fluid, obey a closed system of equations

8,I =2V, 8,V =2H+20M, M =-2QV, (10)

where the total energy

H= %/dx (hu® + h?7)

is a constant of motion.
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Equations (10) can be integrated to obtain

I=07%(H+Qm) - % cos(20t), (11)

M = —Q 'H + Vycos(2Qt), V = Vsin(2Qt),
where m and V are two more constants of motion
m=M+QI, VZ=(M+Q'H)’+V%. (12)

The isotropic collapse implies a specific temporal
evolution when the positive quantity I decreases with
increasing t and reaches the value I = 0 at a point
t = to > 0 in the final stage.

Because in the course of time the function J becomes
zero only if

(H + Qm)* < Q*VZ, (13)

this condition is the criterion for collapse in the rotat-
ing shallow water models with a horizontally-nonuniform
density.

Representing the total energy H as the sum of kinetic
and potential energies

1 1
H =K +1I, K:E/dxhuz, H:§/dxh27-,

and using (12), we can rewrite inequality (13) in an
equivalent form

2I(TT+ K') < V2. (14)
Here

! Q22 1 2
K :K+QM+71 =3 dx hu

is the positive definite quantity which can be treated as
the kinetic energy in the rotating frame reference.

Since in this frame reference u}, = wu; + Qepay,
and hence z;u; = z;u}, owing to the Cauchy inequal-
ity V2 < 2IK', we can find from (14) the following
condition

II < 0. (15)

Thus, the isotropic collapse occurs if II < 0. The
only way to provide this condition is by appropriately
choosing the initial distribution for field 7 which, unlike
h, can be signalternating. Negative values of II indicate
directly that the collapse is initiated by the Rayleigh—
Taylor instability.

4. Power laws of self-similar collapses. As
known [17], self-similar solutions are intermediate as-
ymptotics of non-degenerate problems and are very use-
ful in studying the final stages of strongly nonlinear

processes, when the system forgets about details related
to the initial data and its behavior depends on the inte-
grals of motion.

For any dynamical system, the existence of self-
similar solutions reflects the existence of fundamental
internal symmetries and allows us to judge the tenden-
cies in the development of the instability at the final
stage. This type of solutions is of particular importance
for studying the phenomenon of collapse — the formation
of a singularity in a finite time [5, 18].

Isotropic collapses. Suppose that the collapse has
isotropic character and demonstrates self-similar behav-
iour in the vicinity of the point x = 0 so that

h(x,t) = bf(x'),

where f(x') is a shape factor and b(t) and 8(t) are func-
tions of time.
Then, after integrating in (4) and (9), we can write

x' = ,B_lx,

Q= b,Bz/dx’f(x’), I= bﬁ4/dx'f(x')x'2.
Eliminating the function b, we find
I =p2C. (16)

Here, the positive constant C' is dependent on the shape
factor f only and is defined as

C=qQ [/ dx’f(x’)]l/dx’f(x’)x’2.

On the other hand, since in the course of collapsing,
the function J asymptotically (as t — ¢o) tends to zero,
expanding the right part of (11) in powers of (o — t),
we approximately obtain

H + Qm = VpQ cos(282y),
Izal(to—t)+a2(t0—t)2+..., (17)

where

@ =2\/V@ — Q-2 (H + Qm)°, as = 2(H + Qm).

Thus, the comparison of (16) with (17) allows us to
make the following conclusions.

1. If a; # 0, i.e., the inequality (13) is strict, then
the isotropic collapse obeys laws

Br(to—t)"%, h~B 2~ (to—t)*.  (18)

2. But if a; = 0, i.e., the inequality (13) turns into
equality, then, instead of (18), we obtain the laws

Brtg—t, he~B 2~ (tg—t) 2. (19)
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Anisotropic collapses. When collapse loses the
radial symmetry, power laws (18), (19) become unus-
able. In such situations, a collapsing liquid fragment
contracts into a line segment rather than into a point.
For this reason, using positive definite integral (9) to
test the anisotropic collapse is doomed to failure.

According to [12], anisotropic collapses in 2D-model
have the same exponents as one-dimensional ones in flat
model. The only difference is that in the flat model a
liquid fragment shrinks not into a line segment but into
an infinite axis perpendicular to the flow plane. Thus
collapses in the flat model represent an idealization.

In the one-dimensional case, instead of Egs. (10), we
have

oI =2V, 0,V =H+K, (20)
where

I:/dxh:vz, V:/dxh:w, H =11+ K = const,

1 1
HZE/dxh2T, K:§/d91chu2

are integrals in one dimension.

Thus, we have two Egs. (20) in the three variables
I, V, and K. In order to close the system, we need
one more equation. It can be obtained from the Cauchy
inequality

V2 <2IK

under the assumption that, for the collapsing solutions,
this inequality asymptotically (as ¢ — o) turns into an
equality.

As a result, after using (16) which remains valid for
the one-dimensional case too, we arrive at the single
equation

poa+ 3 @087 ~ 2 <o (21)

Equation (21) has two power-law solutions. One of
them,

B (to— )%, h~ Bt~ (to— )%,

makes sense if H = 0, while the other,
B~ (tO - t) )

is realized if H > 0.

Note that due to conservation of the integral m =
= M + QI = const, the line segment which accumulates
fluid in the case of anisotropic collapse should rotate
with a constant angular velocity.

he B0~ (tg—t)7",
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5. Conclusions. We now summarize the main re-
sults of the work. The basic goal of this paper was
to study power-law collapses in 2D-shallow water flows
with horizontal density gradients. We discuss the model
specifications and formulate the governing equations.

According to the rigorous integral criterion, the
isotropic collapse is initiated only if the distribution of
density or of temperature is such that the potential en-
ergy integral is non-positive. Therefore, the mechanism
that invokes the collapse is the Rayleigh—Taylor insta-
bility.

In our opinion [7-12], this phenomenon arises at the
final stage when the development of instability has led
to disintegration of the strongly perturbed flows. Once
localized (drop-like) fragments are formed, the collapse
eventually occurs and leads to the formation of finite-
time singularities.

We also discuss the self-similar scenarios of collapses.
Analysis shows that two collapse scenarios are possible
depending on whether the drop-like fragment is con-
tractible into a segment or into a point. If the col-
lapse is isotropic, it leads to point space singularities
in which the height h behaves as h ~ (t, — t)~! or
h ~ (to —t)~2. In the anisotropic case, singularities
are located at line segments and the collapse can follow
the slower law h ~ (to —t)~2/3.

Since the singularities produce power-law tails in the
short-wave range of spectrum, the study of collapses pro-
vides the key to understanding of strong turbulence.

Note that the formation of finite-time singularities
is an idealization. For this reason, the collapse mecha-
nism considered here must be treated as an initial stage
of instability for the real physical system. At the next
stage, when small scales come into the play, the collapse
dynamics goes beyond the validity range of the shallow
water approximation and we should take into account
the influence of dispersion effects. In this case the sta-
bilization of collapses and the formation of soliton-like
structures is a possible scenario, but not a necessary
one. In particular, self-similar collapses initiated by a
nonlinear dispersion are considered in works [9-12].

In the present brief work we do not touch the prob-
lem of finding structural elements which correspond to
the self-similar collapses. This problem will be consid-
ered by us in a subsequent paper.
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