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 2012 October 10Blow-up instability in shallow water 
owswith horizontally-nonuniform densityV.P.Goncharov1), V. I. Pavlov�1)Obukhov Institute of Atmospheric Physics of the PAS, 109017 Moscow, Russia�UFR de Math�ematiques Pures et Appliqu�ees, Universit�e de Lille 1, 59655 Villeneuve d'Ascq, FranceSubmitted 9 June 2012Resubmitted 21 August 2012The mechanisms of instability, whose development leads to the occurrence of the collapse (blow up), havebeen studied in the scope of the rotating shallow water 
ows with horizontal density gradient. Analysis showsthat collapses in such models are initiated by the Rayleigh{Taylor instability and two scenarios are possible.Both the scenarios evolve according to a power law (t0 � t)
 , where t0 is the collapse time, with 
 = �1;�2,and 
 = �2=3;�1 for the isotropic and anisotropic collapses, respectively. The rigorous criterion of collapseis found on the base of integrals of motion.1. Introduction. Shallow water models are widelyused in the description of large-scale motions in the at-mosphere, oceans, rivers, avalanches, etc. The need forshallow water approximation arises in many physical sit-uations when the typical horizontal scale of the motionis much larger than the vertical dimension of the 
ow.Besides geophysical 
uid dynamics, the classicalshallow water models can be useful for studying certainastrophysical phenomena. For example, a shallow wateranalogue was used to describe both implosive phenom-ena and the shock instability taking place in the collaps-ing inner core prior to explosion of a protoneutron star[1]. The shallow water model can also describe the dy-namics of the tachocline of a star, as was done in [2] and[3] for the tacholine of the Sun.For shallow water 
ows, as well as for other nonlin-ear systems, the problem of stability is central becausedevelopment of instability determines the possible �nalregimes realized in the 
ows. Various scenarios of insta-bility exist, and one of them is the collapse [4, 5]. Thisphenomenon implies formation of �nite-time singulari-ties and is a rather universal mechanism by which insta-bilities manifest themselves in nonlinear systems [6{12].The basic premise of this paper assumes that devel-opment of large-scale instability leads to disintegrationof 
ow and to occurrence of particle-like 
uid fragments.In next stages, these quasi-regular formations play a roleof structural elements from which it is possible to com-pile an overall picture of the instability up to the �nalstage when collapse initiating small-scale turbulence isinvolved in the game.1)e-mail: v.goncharov@rambler.ru; Vadim.Pavlov@univ-lille1.fr

The main goal of this work is to study the self-similarscenarios of collapses in rotating shallow water 
owswith horizontal density gradient. Whether or not theinstability leads to collapse depends on the model speci-�city and initial conditions and it can be established onthe basis of integral criteria. For conservative models,such criteria are commonly intimately related to inte-grals of motion and open a simple way to study powerlaws under which �nite-time singularities form in 
ows.2. Shallow water model with horizontally-nonuniform density. We consider a two-dimensional�eld model whose evolution is described by the equa-tions@tui + uk@kui � 2
eikuk = 12h@i� � @i(h�); (1)@th+ @k(huk) = 0; (2)@t� + uk@k� = 0: (3)Here, the notations are as follows: xi = (x1; x2) arethe Cartesian coordinates; @t = @=@t, @i = @=@xi;eik is the unit antisymmetric tensor, e11 = e22 = 0,e12 = �e21 = 1; ui are horizontal components of depth-averaged velocity in layer; h is its thickness. Since 
 isconstant angular velocity with which the layer is rotatingabout the vertical axis, the term 2
eikuk implies compo-nents of Coriolis acceleration. The physical signi�canceof �eld variable � depends on the model speci�cation.One of the simplest speci�cations [13] suppose thatthe layer is bounded above by a vacuum (free boundarycondition). In this case � has meaning of the buoyancyand is de�ned as � = g(1 + �%=%0), where g is gravityand �% is the density deviation from the backgroundvalue %0. It must be emphasized that in this speci�ca-474 �¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 7 { 8 2012



Blow-up instability in shallow water 
ows with horizontally-nonuniform density 475tion � , just as the thickness h, is only a positive functionof the horizontal coordinates and time.Note that in the case when �% = 0, so that � = g isconstant, Eqs. (1){(3) reduce to the usual shallow wa-ter equations describing motion under the in
uence ofgravity g.The next speci�cation removing the restriction � >> 0 can be justi�ed within the framework of two-layermodel. As shown in Figure, this model supposes that
The shallow water model with a relative buoyancy of al-ternating signtwo incompressible 
uids with densities %0 and %0+�%are separated by surface z = h(x1; x2; t) and containedbetween two rigid parallel planes z = 0 and z = l. Ifthe horizontally-nonuniform density jump �% betweenthe 
uids is small and the lower layer is su�ciently thin,so inequalities �%=%0 � 1 and h=l � 1 hold, then theshallow water approximation again leads us to Eqs. (1){(3). These equations describe depth-averaged 
ow onlyin the lower layer, but now the variable � = g�%=%0 isthe relative buoyancy and therefore may take any sign.In those cases when density variations are producedonly by temperature ones �T and are linearly con-nected, the relative buoyancy can be computed as � == �g��T , where � is thermal expansion coe�cient.This parametrization allows to study heating and cool-ing e�ects in shallow water models (see, as an example,[14{16]).In order to understand how the 
uid moves as awhole, it is helpful to consider the evolution of the centerof mass. Since integral of total massQ = Z dxh; (4)is constant, we can �nd directly from Eqs. (1){(3) thatcoordinates of the center of mass Xi and components ofthe total momentum Pi de�ned asXi = Q�1 Z dxhxi; Pi = Z dxhui;are governed by the equations@tXi = Q�1Pi; @tPi = 2
eikPk: (5)

Equations (5) can be easily integrated to obtainP1 = P0 sin(2
t); P2 = P0 cos(2
t); (6)X1 = X01 � P02Q
 cos(2
t); (7)X2 = X02 + P02Q
 sin(2
t); (8)where X01, X02 are integration constants, and the mod-ulus of momentum P0 = jPj is the constant of motion.Relations (7) and (8) say that, subject to 
 == const 6= 0, the center of mass moves around a circleof radius P0(2Q
)�1 with constant angular velocity 2
.3. Integral criteria for collapses. Suppose thatthe development of instability leads to the formation of asingularity in a point. This means that with the lapse oftime, almost the entire 
uid is localized in the vicinity ofthis point. Thus, the collapse point coincides with thecenter of mass and it is natural to describe collapsing
uid fragments in the center of mass reference frame x0,where the collapse point x0 = 0 is immovable.Since the primed and unprimed coordinates and ve-locities are connected by the transformationx = X+ x0; u = Q�1P+ u0;which leaves invariant Eqs. (1){(3), in order not tochange the notations, it is possible to put from the verybeginning that P = 0 and X = 0.As an indicator of the isotropic collapse, we will usethe positive de�nite integralI = Z dxhx2; (9)which has a very simple physical meaning of the momentof inertia with respect to the center of mass. Here andelsewhere we will assume that integrals are taken overthe whole area occupied by a collapsing 
uid fragment.On the ground of Eqs. (1){(3), it is easy to show thatI and integralsM = Z dxh (x1u2 � x2u1) ; V = Z dxhxiui;which have meaning of the kinetic moment and the virialfor the 
uid, obey a closed system of equations@tI = 2V; @tV = 2H + 2
M; @tM = �2
V; (10)where the total energyH = 12 Z dx �hu2 + h2��is a constant of motion.�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 7 { 8 2012



476 V.P.Goncharov, V. I. PavlovEquations (10) can be integrated to obtainI = 
�2 (H +
m)� V0
 cos(2
t); (11)M = �
�1H + V0 cos(2
t); V = V0 sin(2
t);where m and V0 are two more constants of motionm =M +
I; V 20 = �M +
�1H�2 + V 2: (12)The isotropic collapse implies a speci�c temporalevolution when the positive quantity I decreases withincreasing t and reaches the value I = 0 at a pointt = t0 > 0 in the �nal stage.Because in the course of time the function J becomeszero only if (H +
m)2 � 
2V 20 ; (13)this condition is the criterion for collapse in the rotat-ing shallowwater models with a horizontally-nonuniformdensity.Representing the total energyH as the sum of kineticand potential energiesH = K +�; K = 12 Z dxhu2; � = 12 Z dxh2�;and using (12), we can rewrite inequality (13) in anequivalent form 2I (� +K 0) � V 2: (14)Here K 0 = K +
M + 
22 I2 = 12 Z dxhu02is the positive de�nite quantity which can be treated asthe kinetic energy in the rotating frame reference.Since in this frame reference u0i = ui + 
eikxk ,and hence xiui = xiu0i, owing to the Cauchy inequal-ity V 2 � 2IK 0, we can �nd from (14) the followingcondition � � 0: (15)Thus, the isotropic collapse occurs if � < 0. Theonly way to provide this condition is by appropriatelychoosing the initial distribution for �eld � which, unlikeh, can be signalternating. Negative values of � indicatedirectly that the collapse is initiated by the Rayleigh{Taylor instability.4. Power laws of self-similar collapses. Asknown [17], self-similar solutions are intermediate as-ymptotics of non-degenerate problems and are very use-ful in studying the �nal stages of strongly nonlinear

processes, when the system forgets about details relatedto the initial data and its behavior depends on the inte-grals of motion.For any dynamical system, the existence of self-similar solutions re
ects the existence of fundamentalinternal symmetries and allows us to judge the tenden-cies in the development of the instability at the �nalstage. This type of solutions is of particular importancefor studying the phenomenon of collapse { the formationof a singularity in a �nite time [5, 18].Isotropic collapses. Suppose that the collapse hasisotropic character and demonstrates self-similar behav-iour in the vicinity of the point x = 0 so thath(x; t) = bf(x0); x0 = ��1x;where f(x0) is a shape factor and b(t) and �(t) are func-tions of time.Then, after integrating in (4) and (9), we can writeQ = b�2 Z dx0 f(x0); I = b�4 Z dx0 f(x0)x02:Eliminating the function b, we �ndI = �2C: (16)Here, the positive constant C is dependent on the shapefactor f only and is de�ned asC = Q �Z dx0 f(x0)��1 Z dx0 f(x0)x02:On the other hand, since in the course of collapsing,the function J asymptotically (as t! t0) tends to zero,expanding the right part of (11) in powers of (t0 � t),we approximately obtainH +
m = V0
cos(2
t0);I � a1 (t0 � t) + a2 (t0 � t)2 + : : : ; (17)wherea1 = 2qV 20 � 
�2 (H +
m)2; a2 = 2 (H +
m) :Thus, the comparison of (16) with (17) allows us tomake the following conclusions.1. If a1 6= 0, i.e., the inequality (13) is strict, thenthe isotropic collapse obeys laws� � (t0 � t)1=2 ; h � ��2 � (t0 � t)�1 : (18)2. But if a1 = 0, i.e., the inequality (13) turns intoequality, then, instead of (18), we obtain the laws� � t0 � t; h � ��2 � (t0 � t)�2 : (19)�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 7 { 8 2012



Blow-up instability in shallow water 
ows with horizontally-nonuniform density 477Anisotropic collapses. When collapse loses theradial symmetry, power laws (18), (19) become unus-able. In such situations, a collapsing liquid fragmentcontracts into a line segment rather than into a point.For this reason, using positive de�nite integral (9) totest the anisotropic collapse is doomed to failure.According to [12], anisotropic collapses in 2D-modelhave the same exponents as one-dimensional ones in 
atmodel. The only di�erence is that in the 
at model aliquid fragment shrinks not into a line segment but intoan in�nite axis perpendicular to the 
ow plane. Thuscollapses in the 
at model represent an idealization.In the one-dimensional case, instead of Eqs. (10), wehave @tI = 2V; @tV = H +K; (20)whereI = Z dx hx2; V = Z dx hxu; H = �+K = const;� = 12 Z dx h2�; K = 12 Z dx hu2are integrals in one dimension.Thus, we have two Eqs. (20) in the three variablesI , V , and K. In order to close the system, we needone more equation. It can be obtained from the Cauchyinequality V 2 � 2IKunder the assumption that, for the collapsing solutions,this inequality asymptotically (as t ! t0) turns into anequality.As a result, after using (16) which remains valid forthe one-dimensional case too, we arrive at the singleequation �@2t � + 12 (@t�)2 � HC = 0: (21)Equation (21) has two power-law solutions. One ofthem,� � (t0 � t)2=3; h � ��1 � (t0 � t)�2=3 ;makes sense if H = 0, while the other,� � (t0 � t) ; h � ��1 � (t0 � t)�1 ;is realized if H > 0.Note that due to conservation of the integral m ==M +
I = const, the line segment which accumulates
uid in the case of anisotropic collapse should rotatewith a constant angular velocity.

5. Conclusions. We now summarize the main re-sults of the work. The basic goal of this paper wasto study power-law collapses in 2D-shallow water 
owswith horizontal density gradients. We discuss the modelspeci�cations and formulate the governing equations.According to the rigorous integral criterion, theisotropic collapse is initiated only if the distribution ofdensity or of temperature is such that the potential en-ergy integral is non-positive. Therefore, the mechanismthat invokes the collapse is the Rayleigh{Taylor insta-bility.In our opinion [7{12], this phenomenon arises at the�nal stage when the development of instability has ledto disintegration of the strongly perturbed 
ows. Oncelocalized (drop-like) fragments are formed, the collapseeventually occurs and leads to the formation of �nite-time singularities.We also discuss the self-similar scenarios of collapses.Analysis shows that two collapse scenarios are possibledepending on whether the drop-like fragment is con-tractible into a segment or into a point. If the col-lapse is isotropic, it leads to point space singularitiesin which the height h behaves as h � (t0 � t)�1 orh � (t0 � t)�2. In the anisotropic case, singularitiesare located at line segments and the collapse can followthe slower law h � (t0 � t)�2=3.Since the singularities produce power-law tails in theshort-wave range of spectrum, the study of collapses pro-vides the key to understanding of strong turbulence.Note that the formation of �nite-time singularitiesis an idealization. For this reason, the collapse mecha-nism considered here must be treated as an initial stageof instability for the real physical system. At the nextstage, when small scales come into the play, the collapsedynamics goes beyond the validity range of the shallowwater approximation and we should take into accountthe in
uence of dispersion e�ects. In this case the sta-bilization of collapses and the formation of soliton-likestructures is a possible scenario, but not a necessaryone. In particular, self-similar collapses initiated by anonlinear dispersion are considered in works [9{12].In the present brief work we do not touch the prob-lem of �nding structural elements which correspond tothe self-similar collapses. This problem will be consid-ered by us in a subsequent paper.This work was supported by the Russian Foundationfor Basic Research (Project #12-05-00168), by the Pre-sidium of the Russian Academy of Sciences (ProgramFundamental Problems of Nonlinear Dynamics), and bythe President of the Russian Federation (Program NSh-4166.2006.5).�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 7 { 8 2012



478 V.P.Goncharov, V. I. Pavlov1. T. Foglizzo, F. Masset, J. Guilet, and G. Durand, Phys.Rev. Lett. 108, 051103(4) (2012).2. P.A. Gilman, Astrophys. J. 544, L79 (2000).3. D.A. Schecter, J. F. Boyd, and P.A. Gilman, Astrophys.J. 551, L185 (2001).4. E. A. Kuznetsov and V.E. Zakharov, Lect. Notes Phys.542, 3 (2000).5. E. A. Kuznetsov, Izv. Vyssh. Uchebn. Zaved., Ser. Ra-dio�z. 56, 342 (2003).6. J. Eggers and M.A. Fontelos, Nonlinearity 22, R1(2009).7. V. P. Goncharov and V. I. Pavlov, JETP Lett. 84, 384(2006).8. V. P. Goncharov and V. I. Pavlov, Phys. Rev. E 76,066314 (2007).9. V. P. Goncharov and V. I. Pavlov, Hamiltonian Vortex

and Wave Dynamics, Geos, Moscow, 2008 (in Russian).10. V.P. Goncharov, JETP Lett. 89, 393 (2009).11. V. P. Goncharov and V. I. Pavlov, JETP 111, 124(2010).12. V.P. Goncharov, JETP 113, 714 (2011).13. P. Ripa, Geophys. Astrophys. Fluid Dynam. 70, 85(1993).14. D. L. T. Anderson, Tellus A 36, 278 (1984).15. P. S. Schopf and M.A. Cane, J. Phys. Oceanogr. 13, 917(1983).16. P. Ripa, Dynam. Atmos. Oceans 29, 1 (1999).17. G. I. Barenblatt, Scaling, Self-Similarity, and Interme-diate Asymptotics, Cambridge University Press, Cam-bridge, 1996.18. V.E. Zakharov and E. A. Kuznetsov, Sov. Phys. JETP64, 773 (1986).

�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 7 { 8 2012


