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We report on theoretical study of the bound electron states induced by a ferromagnetic delta-layer embed-
ded into a narrow-band-gap semiconductor of the BisSes-type which is a three-dimensional topological insulator
with large spin-orbit coupling. We make use of an effective Hamiltonian taking into account the inverted band
structure of the semiconductor host at the I' point and describe the properties of the in-gap bound states:
energy spectrum, characteristic length and spin polarization. We highlight a role of these states for a magnetic
proximity effect in digital magnetic heterostructures based on the Bi>Ses-type semiconductors.

1. Introduction. Since the discovery of three-
dimensional (3D) topological insulators (TIs), interplay
between topological order and magnetism has been con-
sidered as one of the field of paramount importance
[1,2]. When time-reversal symmetry is broken, topolog-
ical surface states are expected to exhibit a wide range
of exotic spin phenomena (for example, quantized anom-
alous Hall effect) [3-5] which are potentially useful for
spintronic applications [6]. The spontaneous symmetry
breaking in the system can be realized by the doping
with magnetic ions to induce magnetism in the bulk or
on the surface of TI [7-9], or by a heterostructure de-
sign wherein exchange field is induced at the TI surface
by the quantum proximity to a ferromagnetic (FM) ma-
terial [9,10]. However, there is one more way to create
magnetization in TI, which is still out of the activity field
of both experimentalists and theorists. Keeping in mind
the fact that the modern molecular beam epitaxy tech-
nology makes it possible to prepare digital magnetic het-
erostructures (DMHs) in which mono- (submono)-layers
of transition metals, embedded into the semiconductor
TT host, form the so-called FM delta-layers (& layers)
[11]. In this work, we explore theoretically how the elec-
tron and spin densities of a 3D TI host are affected by
an inserted FM § layer.

A common manner to introduce ferromagnetism into
TT is the doping with transition metal impurities, just
as that has been succeeded in diluted magnetic semi-
conductors (DMSs) [12]. The thin films of TI DMS
Sby_;Cr,Tes [13] and Sby_,V,Tes [14] display robust,
out-of-plane FM order with the Curie temperature in-
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creasing almost linearly with the content of 3d impu-
rity, so that the highest Curie temperatures are 190K
in a Sb1.4101‘0_59T63 film and 177K in a Sb1_65V0_35T63
film. Just recently, Salman et al. [15] have found that
even at Fe doping levels as low as 5 percent, the full vol-
ume of Biy ,Fe,Ses becomes magnetic at a relatively
high temperature of ~ 250 K.

As it is well known, DMSs are characterized by a
strong disorder in the distribution of the magnetic metal
atoms in the host; as a result, the large content of 3d
dopant in the TI DMSs influences their band structure
so that topological order may be lost due to a strong
exchange scattering. In contrast, it is generally thought
that, in the epitaxial growth process of the Bi,Ses-type
based DMHs, the diffusion smearing and roughness of
the FM § layers are restricted within a relevant quin-
tuple. At the same time, the FM order in the layers,
enriched in 3d transition metal (Cr, V, Fe) atoms and
embedded into the TT host (SbyTes, BizSes), could man-
ifest itself at the temperatures well above a room tem-
perature.

Below we consider the model of a single FM ¢ layer
embedded into the 3D TT host of the BisSes-type semi-
conductor with an inverted band gap, described on the
basis of the k - p Hamiltonian [16]. Strictly speaking,
the very assumption that the FM order exists inside the
0 layer is not evident [17], but in our model, this or-
der promoted by strong correlations of electron states
at the transition metal ions is merely postulated. The
influence of the FM ¢ layer on the electron states of
the TI host is described by means of an effective one-
dimensional potential, which includes both a potential
(spin-independent) and an exchange (spin-dependent)
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contribution. We argue that the FM § layer induces the
quasi-2D bound electron states residing inside a TI host
gap. Within the framework of a continual approach, we
study these states to determine their energy spectrum,
spin polarization, space shape, and characteristic length
A. In this letter we concentrate only on the key aspects
of the phenomenon omitting many cumbersome calcula-
tion details.

2. Model Hamiltonian.We begin considering the
model k - p Hamiltonian for materials of the BisSes-
family [16]:

Hy = / dry ™ (r) E*P) (—iV)h(r), (1)

where 9 (r) is the smooth envelope function in the spinor
basis (|4, 1), |—, 1), |+,4),]— ) of the four low-lying
states at the I" point with k = 0. The signs “+” denote
the even and odd parity states, respectively, and the ar-
rows J 1 indicate the spin projections. In the Bi»Ses-type
material, these four states originate from the bonding
combinations of Bi P1,-orbitals and anti-bonding com-
binations of Se P2, -orbitals. The important symmetries
of the system are time-reversal symmetry 7', inversion
symmetry I and three-fold rotation symmetry C3 along
the z-axis. Keeping only the terms up to quadratic or-
der in the wave vector k, Zhang et al. constructed the
following generic form of the 4 x 4 effective Hamiltonian
[16]:
E™P) (k) = eo(k)Isxs + E(K) 00 +

+ A‘]Tw(kzaw + kyay) + Ak, 7,0, (2)

with 2(k) = £ — B)|(k2 + k2) — B.kZ; I4x4 is an unit
matrix, 0g .y, and Tp gy, denote the Pauli matrices
in the spin and orbital space, respectively. An impor-
tant feature is that the orbitals |[+,1 (1)) and |—,1 (}))
at the I' point have the opposite parities, so that the
off-diagonal terms are linear in k., and k.. The sim-
ple model (1), (2) captures remarkable features of the
band structure, especially, under the condition =, B,,
B)| > 0, the inverted order of the terms |+,1 (])) and
|—,1 (1)) near k = 0 (as compared with large k), which
correctly characterizes the topologically non-trivial na-
ture of the system due to the strong spin orbit coupling.
In what follows, for simplicity we assume eo(k) = 0 and
B, = By = B and A, = A = A. Then the disper-
sion of the bulk bands is given by w = Zwy(k) with
wo(k) = /Z22(k) + A2k2, k* = k2 + k2 + k2. We re-
strict ourselves to the case of “camelback” shaped bands
(2BE > A?%) when the band gap gets the minimal magni-

tude E, = 2Q) at the nonzero wave-vector k = ko, where

ko = 7“”\}??; Q = wo(ko) = 7‘4‘/412357_'42.
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The model Hamiltonian (1), (2) is defined on the
whole space of the host. Although the k - p approach is
an efficient tool for the small-momentum realm ka < 1
(a is the lattice constant), it cannot provide adequate
information on the wave-function behavior in the vicin-
ity of the atomically sharp FM § layer where large mo-
menta are highly important. The embedding of the FM
0 layer drastically perturbs the electron density and de-
forms the crystal lattice of the host. In fact, the inter-
nal electron properties of the TI host near the FM ¢
layer may significantly differ from those at the periph-
ery of this layer. Therefore, assuming the FM ¢ layer
to be located at z = 0 and retaining a 2D periodic-
ity along the (z,y) plane, we introduce the Hamiltonian
Hs = a [ dryt(r)Y (2)9(r) of the FM § layer perturb-
ing the electron states of the TTI host. In principle, the
effective spin-dependent potential Y (z) = p(z) + U(z)
contains components with different spatial scales. The
long-range component ¢(z) caused by the charge redis-
tribution around the § layer induces the energy band
bending deep into the TI host (really, on the scale of
tens of nanometers in the BiySes-type non-degenerate
semiconductors). The scale of the short-range compo-
nent U(z) is of the order of the ¢ layer thickness and
may reach several angstroms in the advanced selective
doping technologies. For simplicity, we include the long-
range component ¢(z) into the renormalization of the
chemical potential of the system, while the short-range
component U(z) is treated as a single plane defect de-
scribed in the phenomenological way by means of a spin-
dependent contact potential U(z) = Ud(z), where

U= (VUO + AUZ)TO + (UUO + no'z)Tz- (3)

The matrix elements V, v and A, n are related to the
processes of potential and exchange scattering, respec-
tively. For the sake of simplicity, we neglect the inter-
band scattering processes and imply that the magneti-
zation of the FM § layer is directed along the normal to
its plane.

One can intuitively interpret the physical meaning
of the matrix elements of the potential (3). The terms
V and v are responsible, respectively, for the symmetric
and antisymmetric local shifts (around the middle of the
gap w = 0) of the valence and conduction bands due to
Coulomb potential of the § layer. On the other hand, the
terms A and 7 involve, respectively, the symmetric and
antisymmetric local spin splitting of the valence and con-
duction bands produced by an exchange field of the FM
0 layer. The quantity and sign of the matrix elements
depend, in a complicated manner, on many factors: the
sort and concentration of impurity atoms composing the
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4 layer; which of the sub-lattices, Bi or Se, is substituted
with impurity atoms; etc.

The in-gap bound states of the Hamiltonian H =
= Hp, + Hs (1)—(3) can be characterized by the envelope
function ¢ (k, z) that depends on the longitudinal two-
dimensional wave-vector k = (k;, ky) (in a plane geom-
etry, the wave-vector k is a good quantum number) and
exponentially decays in the directions perpendicular to
the & layers as ¥(k, z) ~ exp[—|z|/A(K)], at |z| > A(k),
where A(k) is a decay length.

Within the continual approach, it is quite relevant
to make use a variational treatment for the energy func-
tional F{y*, ¢} = Hp + [dry™ (r)[Ud(z) — El¢(r) that
is defined on the whole space, ¥(r) belongs to the set
of continuous functions, E is the Lagrange multiplier.
Varying functional F{y", 1%} with respect to the func-
tion ¥ (§F/8%™ = 0) yields the Schrodinger equation
for the TT host at z # 0,

EUP) (s, ~i0/02)(k, 2) = B(k)b(r,2),  (4)

and imposes the constraint condition at the ¢ layer,

e

= Uy(k,2)|,_, (5)

It is not difficult to see that Egs. (4), (5) are satisfied by
either an even function ¥(%) (k,z) = () (k, —2) (sym-
metric bound state) or an odd function ¥4 (k,z2) =
= —4)(k, —2) (antisymmetric bound state). The even
function has a discontinuity in the first derivative at the
point z = 0 proportional to the potential strength, while
the odd function and its first derivative are continuous
at z = 0. Hence it follows that the energy spectrum and
space distribution of the symmetric bound state must
directly depend on the spin and orbital structure and
the strength of the effective potential of the § layer. On
the other hand, the antisymmetric bound state is insen-
sitive to the details of the effective potential; in essence,
this potential just fixes the zero point of the envelope
function at the & layer so that 1(4) (k,0) = 0.

3. Symmetric bound states at the § FM layer.
In Ref. [18], within a single-band model, the formalism
of an effective potential has been applied to qualitatively
explain the effect of induced spin polarization in topo-
logically trivial semiconductor with an inserted FM §
layer. It has been shown that charge and spin densi-
ties in the semiconductor host are strongly perturbed
due to the effective potential of the ¢ layer that leads to
appearance of the bound states which reside inside the
bulk semiconductor gap. In Ref.[18] these states were

9y (k, 2)

Boor. [ 0Y(k, 2)

0z 0z

z2=0+

called “confinement states” since they are spatially con-
fined near the § layer. Here, we generalize the formalism
of Ref. [18] to study the in-gap bound states induced by
the & layer embedded into the inverted band gap semi-
conductor host described by the Hamiltonian Hp (1),
(2). Having defined the Green’s function of the bulk

Hamiltonian Hp, (1), (2) as g,*(w) = [w— H]™!, one can
straightforwardly write the single-particle Green’s func-
tion for the Hamiltonian H = Hp + Hs (1)—(3) in the
momentum representation

Gk, k' w) = (2m)%5(k — k') & (k; w)+

+@2m)?%(k — K') G ()T (k;w) G (Ksw),  (6)

where T'(k;w) = U[1- (0}(;<a;w)U]_1 is the full ¢+ matrix
for the scattering of electrons on the plane defect poten-
tial (3), G (ksw) =C (K, 2 = Ojw) = [ 2% & (kw),
d(k) is a delta-function. The poles of the ¢ matrix de-
termine the sub-band spectrum w = wz(s) (k) of the sym-
metric bound (confinement) state induced by the § layer.
After some algebra one can obtain the set of equations
describing the spectrum for the various parameters of
the potential (3):

[1 - Vigi(k;w)][1 = Vaga(k;w)]—
~ViVafi(k;w) f2(k;w) =0,
(K;

[1 - Vagi(k;w)][1 — Vaga(k;w)]—
~VaVafi(k;w) f2(k;w) =0,

V1,2:V:I:A:tv+77, V374:V:tA:FU—'r],

(k3 w) = +a _ EB(r)*w
91,2 Y - 4BI§+ (Ii; w) wg(n) — wz )
—a Aki
1259 = B ) Vo)~ )

where ki (k;w) = \/ wi (k) —w? £ B(k2 — k2)/V2B,
wo(k) = v/Z2(k) + A2k2, Z(k) = E — Bk?. Equations
(7), (8) are invariant under the simultaneous permuta-
tionsw <> —wand [V+Ax(v+n)] < —[V-AF(v—n)].
At the T’ point (k = 0), Egs.(7) are decoupled to
form four independent equations corresponding to spin-
polarized bound states of electrons and holes. The en-
ergy position of the sub-band edge wg‘g) (0) = wl(s)(n =
=0),¢ =1, 2, 3, 4 depends on the strength V;. Given
the parameters V, A, v, 1, in the general case, the
strength V; takes four different values. As illustrated
in Fig.1, for any magnitude and sign of V; there al-
ways exists a single bound state wis) (0). IfVv; >0
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Fig. 1. (Color online) The energy edge of the in-gap bound state as the function of the effective potential strength of the ¢ layer
in the regime 2BE > A? (for concreteness (A?/BE) = 1) for four different partial situations. The variables are measured in
the dimensionless units: @; = wgs)(O) /S and V; = aV;/v/2BE. According to Eq. (8), the letter ¢ indicates the confinement

(s)

mode w;

In the situations V £0,v =0, A=0,p=0and V =0, v =0, A # 0, p = 0, where w* (0) =

(0) induced by the potential strength V;. Each mode is depicted by own color: I — black; 2 —red; 3 — blue; 4 — green.

ws?(0) and wi® (0) = wi*(0),

the black and red curves merge with the blue and green curves, respectively

(Vi < 0) the corresponding sub-band edge is placed
inside the negative (positive) region of the band gap,
-0 < w?(0) < 0 (0 < w(0) < Q). Notice that
wz(s) oV;) # —wES) (0] — Vi) at finite value of V;. Re-
markably, under the influence of the effective potential
terms V or A, the relevant confinement state remains
double degenerate.
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Omitting detailed derivation, we present the spatial
behavior of the envelop function corresponding to i-th
confinement mode in the form:

¥ (k, 2) ~ {a(k) coslr_ (K, w(*) (Kk))2]+

+B(k) sin[k_ (k, wi") (k) |2]]} exp[— 4 (K, w (") (K)) 2],

9)
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Thus, in the
regime 2B= > A2, the function z/;l(s)(n,z) away from
the § layer shows an exponential decay accompanied by
an oscillation.

If the scattering is weak enough, (aV;/2Bko)? < 1,
the 0 layer creates the bound states, the sub-bands
wz(s) (k) of which are slightly split off from the band edges
of the host,

(s) 1 = (s) _ 2B (2Bkq

Q- |w;7(0)] = [14—5], A; —7<m>,

(10)

where the corresponding localization lengths )\53) =

= [ky (@™)]~! are very long in comparison with the
characteristic length A(4) = 2B/A.

Under the stipulation of the strong scattering on the

d layer, when (aV;/A)? > 1, it is not difficult to one

obtains analytical solutions of Egs. (7), (8) in the form:

where a(k) and [(k) are coefficients.

2R (T - Ty ) A2z, (10)

B2 (R) (V1 = Vi )% + A2,

where 171 = aV;/A is the dimensionless strength. These
expressions are valid at w? < Q2 and, correspondingly,
k < Q/A. One can see from Eq.(11), the symmetric
bound states acquire the spectrum of the massive Dirac
fermions, the energy shift and gap of which are pro-
portional to —(V £ n) and |A £ v|, respectively. It is
worth noting that if the effective potential (3) contains
either only the matrix elements V and A, i.e., V # 0,
A # 0, and v = n = 0, these states are double de-
generate, wgs)(n) = wé”(n), wés)(n) = w‘(f)(n); oth-
erwise, there are four branches of the § layer induced
spin-polarized modes. This conclusion remains valid at
any magnitude of V;. Figure 2 demonstrates the spec-
trum of the bound modes wl(s)(n) in the partial situ-
ation V. = n = 0 (when the confinement bands are
not shifted) for two values of the scattering parameter
v and at the fixed value of the exchange parameter A.
In the limit of the infinite strength (av/A4)? — oo, the
spectrum of the bound states takes the perfect conical
shape w(®) (k) = +Ak (the straight lines in Fig.2). If
(aV;/A)? > 1 and V = n = 0, the decay length of the
confinement mode with the spin projection ¢ = =+ is

given by At(,s)(n) =\4) [1 + % .
4. Anti-symmetric bound states at the FM

6 layer. The state with the envelope function of the
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Fig. 2. (Color online) The energy spectrum of the confine-
ment states wlgs)(k”) in the situation V =0, v # 0, A # 0,
n =0 for A= 0.5, = 1.0, and & = 3.0 (dashed curves),
where A = aA/v/2BE, & = av/v/2BE. The variables are
measured in the dimensionless units: @; = wgs)(O) /2 and
kE = k/ko. The curves are marked by the corresponding
mode indices ¢ = 1, 2, 3, 4. The linear dependence repre-
sents the spectrum of the odd state wEA)(K,)

form ¢ (k, z) ~ sin[(z + )/ (Q/A)? — k2] exp(—|z +
+ #|/A4) and the Dirac spectrum w4 (k) = +A4k
is obtained with the Hamiltonian (1), (2) for the bulk
TI The state decay length A(4) = 2B/A depends on
the material parameters of the bulk TI, while the space
phase ¢ is arbitrary. To obtain the envelope function of
the topological surface state, Shan et al. [19] imposed
the so-called open boundary condition ¢¥(k,z = 0) =0
at the boundary of the TI-half-space with vacuum at
z = 0. In the context of our task, to satisfy Eq.(5)
at the § layer, we choose the function () (k,z) with
the phase ¢ = 0, then the expression for the spa-
tial distribution of the antisymmetric state is given by
YA (K, 2) ~ sin[z4/(Q/A)? — k2] exp(—|z|/AY)). The
appearance of the in-gap antisymmetric bound state
with the odd envelope function ¢(4)(k, z) and the Dirac
spectrum w(4) (k) = +Ax means that the TI host loses
topological invariant(s) at z = 0 due to the strong and
local perturbation of type (3) caused by the d layer em-
bedded into the host. The state ¢(4) (k, z) is pinned up
by the § layer, but it is unaltered in form of both the en-
velope function and the spectrum. In this sense one can
say that the state ¢(4)(k, z) is topologically protected

similar to the topological surface state [1,2].
Conclusion. Thus, we argue that in DMHs,
wherein the § layers are inserted into the TI host,
there can appear two distinct types of the in-gap bound
Iucema B ARIIT® Tom 96
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states: the symmetric, ¢(*)(k, z), and antisymmetric,
¥4 (k, z), states. The origin of the symmetric states
in DMHs is in one-to-one correspondence with the ori-
gin of the convenient confinement states of carriers at
interfaces or (sub)monolayers insertions in traditional
semiconductor layered structures [17,18]. Of course,
the inverted band structure of the host influences the
features of the symmetric state, in particular, the fact
that it exists under any magnitude and sign of the po-
tential related to the ¢ layer. The antisymmetric state
is a close analogue of the topological surface state at-
tributed to the Z, invariant of TI [1,2]. It emerges near
the 0 layer, where the topological invariance is locally
destroyed, and, in this manner, the antisymmetric state
represents the hallmark of topological properties of the
host material.

Having elucidated the peculiar features of the bound
states induced by the d layer, we propose the design con-
cept of a spintronic device based on the magnetic prox-
imity effect in DMHs. Let us imagine a setup consisting
of a semi-infinite semiconductor-TI host (e.g., BiyTes,
BiySbs, SbaTes) and a metal (e.g., Mn, Fe, Cr) — rich
FM § layer inserted parallel to the free surface of the
host at the distance [ from the surface. We assume
that in such the system there exist four symmetric states
") (k, z) associated with the gapped sub-bands w'® (k)
and two states possessing the linear energy-momentum
relation w4 (k) = +Ak at small x, namely, the an-
tisymmetric state 1/(4)(k,z) and the topological free-
surface state 9(T)(k,z). For the sake of simplicity,
we suppose the situation V' = n = 0 and |v| > |A]|,
the energy spectrum of which is shown in Fig.2. The
Fermi level p is assumed to lie within the band gap
of the TI host. The electrons (holes) that populate
the Dirac cones are free to move in the plane paral-
lel to the ¢ layer and the TI surface, but are strongly
confined in the direction perpendicular to them, form-
ing 2D helical fermion gas. Due to the finite size ef-
fect [20], the tunneling between the antisymmetric bulk
state ¢(4)(k, z) and the surface state ¢(*)(k,z) opens
an energy gap 0 in the Dirac spectrum at the I' point.
The magnitude of the tunneling gap for (Al/2B) > 1
can be estimated as ©, ~ (A%/B)exp(—Al/2B) [19)].
Assuming for certainty that the Fermi level lies above
zero, u > 0, and intersects at least one of two confine-
ment sub-bands with opposite spin polarizations o = £
(the circumstance in which we are most interested),
wgs)(h‘,) = ws:g) (r), wgs)(h‘,) = (r), the carriers of
the partially occupied states are polarized on the scale
A% (k) and the magnetization (i.e. short-range spin

order) m(z) ~ Y [9%) (k,2)Ph(n — w$’) (k)] appears
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about the FM ¢ layer, where h(w) is the Heaviside
function. The asymptotic behaviour of the magneti-
zation, m(z) ~ exp(—2|z|/A(®)), is determined by the
confinement mode with smallest binding energy, A(¥) ~
~ max(© — |w(0)])~L. We would like to emphasize
that, as seen in Fig.2, the energy of electron (hole)
excitation from any confinement sub-band to the bulk
conduction (valence) band is always smaller than that
from the Dirac band, i.e., |w§s)(n)| > |wW (k)| = Ak,
therefore the penetration length of the confinement state
is always longer than the penetration length of the
antisymmetric state, A(®) > A4, Moreover, when
the interaction of electrons with the ¢ layer is weak,
(alv + A|/2Bko)? < 1, one has % = % > 1.
Thus, the confinement state induced by the FM ¢ layer
has rather extended character along the growth axis of
DMH because of its small binding energy, so it can
spread over a wide enough range (A(*) ~ [) to reach the
surface of the semi-infinite TI host. In such the case,
the surface helical electrons, subjected to the influence
of the spin-splitting exchange field normal to the surface
and proportional to the build-in magnetization m(z), be-
come massive with the gap ©,, ~ m(z = l). Remark-
ably, the size effect produces negligibly small gapping O
compared to the exchange (time-reversal breaking) gap
O,, > 0. Note, the antisymmetric state also becomes
massive but with larger gap ~m(z = 0).

Therein lies a feasible mechanism for “remote” con-
trol (via the FM ¢ layer that is separated from the sur-
face by a TI spacer of finite thickness [) of quantum
spin transport on the clean surface holding the helical
electrons. The essential advantage of this mechanism
in proposed DMHs is that the breaking of time-reversal
symmetry and gapping of helical states on the surface
are attained without direct contact with a FM insulat-
ing/metallic coating, therefore the structure saves per-
fectly conducting surface channel with high mobility.

We hope our speculative finding of the specific mag-
netic proximity effect in DMHs will stimulate the open-
ing of an entire new playground where characters of
topological materials can be experimentally studied.
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