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 2012 October 25Polarization tomography of bright states of lightI. N. Agafonov+1), M.V.Chekhova+�, T. Sh. Iskhakov�, B.Kanseri�, G. Leuchs��+Department of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia�Max Planck Institute for the Science of Light, 91058 Erlangen, Germany�University of Erlangen-Nurnberg, 91058 Erlangen, GermanySubmitted 17 September 2012Polarization quantum tomography is performed on 4-mode squeezed vacuum states. Three-dimensionalpolarization quasiprobability functions are obtained and compared to that of an equal intensity coherent state.These distributions clearly demonstrate the di�erence in the polarization properties of the considered states.The reconstruction quality of the coherent state distribution is also analysed by comparing the theoreticallyand experimentally obtained shapes for this state.Polarization properties of nonclassical light are im-portant to quantum optics especially in the continuous-variables case where Stokes polarimetry method is oftenused [1]. Although it is an experimentally convenientmethod it only provides the basic polarization character-istics such as mean values and variances of the Stokes op-erators that are su�cient to characterize only Gaussianstates. In the general case it is not feasible to analyzean in�nite number of central moments, so in order togain further insight into the state properties nonclas-sical polarization quasiprobability function (PQF) hasto be considered. It was introduced by Karassiov andcoworkers [2, 3] and has already been experimentally re-constructed for bright two-mode polarization squeezed(PS) vacuum [2, 4], bright PS coherent state and non-squeezed coherent state [5]. A state is called PS if thevariance of at least one of its Stokes parameters is lessthan that of the coherent state of the same intensity.In this paper we perform polarization quantum to-mography to reconstruct the quasiprobability functionW (S) of bright four-mode PS vacuum states. Here,S = fS1; S2; S3g are the corresponding Stokes observ-ables. These are non-classical Gaussian states alsoknown as macroscopic Bell states (MBS) that were the-oretically predicted in [6] and experimentally observedin [7, 8]. Using coherent state reconstruction as an ex-ample, we analyze the reconstruction quality of our to-mography technique.PQF is de�ned as the Fourier transform of the po-larization characteristic function �(u) [2]� (u1; u2; u3) = Deiu1Ŝ1+iu2Ŝ2+iu3Ŝ3E = Deiu�ŜE ;W (S) = 1(2�)3 Z Z Z � (u) e�iu�Sdu;1)e-mail: ivan.agafonov@gmail.com

where the angle brackets denote averaging over the po-larization state and Ŝ1;2;3 are the Stokes operators.PQF serves as a tool to visualize a polarization stateby depicting its polarization properties in a vivid man-ner. It also provides an easy way to calculate the distri-bution p(S) for an arbitrary Stokes parameter SS = S � n = S1 sin � cos'+ S2 sin � sin'+ S3 cos �;(1)where n is the unit normal vector and � and ' are thespherical angles. The probability distribution p(S) isgiven by the planar projection of PQF onto a line givenby vector n:p(S) = Z Z Z � (S0 � n� S)W (S0)dS0: (2)Inverting Eq. (2) and integrating by parts we get [3]W (S) = � 12�2 Z �=20 Z 2�0 �@2p (�; �; ')@�2 ��=S sin �d'd�:(3)This expression serves as the basis for polarizationtomography and it turns out to be equivalent to an in-verse Radon transform of the experimentally measurablehistograms p(S). Inversion symmetry of the Stokes op-erators measurement implies that it is su�cient to mea-sure the histograms p(S) within just a hemisphere inorder to carry out a complete state reconstruction.In this paper the PQF analysis is applied to MBSwhich are higher photon number generalizations of two-photon Bell states. The prepared MBS in our case con-tain four modes: two polarization and two wavelength546 �¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 7 { 8 2012



Polarization tomography : : : 547ones. Theoretically MBS have been considered in [6]and can be written asj	(�)maci = expn��ay1by2 � by1ay2�+H:C:o jvaci;j�(�)maci = expn��ay1ay2 � by1by2�+H:C:o jvaci; (4)where � is the parametric gain coe�cient, ay; by are pho-ton creation operators in the horizontal and vertical po-larization modes, respectively and the subscripts 1, 2denote wavelength modes. These states are generatedby strongly pumping a standard setup used to producetwo-photon Bell states. At the output of such a setupphoton pairs, quartets, sextets and so on are producedin two wavelength and two polarization modes in such away that the conjugate modes are correlated in photonnumbers.Similar to two-photon Bell states, all MBS are unpo-larized in the �rst order of intensity. Thus their PQF arecentered at the origin of the Stokes space. Theoreticallyeach of the triplet states is completely squeezed in one ofthe three axes (Stokes observables) while antisqueezedin the other two axes resulting in a disk-like form ofthe PQF. The singlet state is completely squeezed inall three directions and thus unpolarized in all orders ofintensity [9]. Experimental procedures introduce losses(detectors non-unity quantum e�ciency, optical losses,imperfect signal and idler mode-matching) that resultin non-perfect squeezing [10]. Fig. 1 shows the experi-

Fig. 1. (Color online) Experimental representation of PQFfor triplet Macroscopic Bell states with losses in the setuptaken into account: j	+maci { blue, j�+maci { green, andj��maci { red; coherent state (displaced to the origin) {yellow

mental expectation for isosurfaces of PQF of the tripletmacroscopic Bell states with total losses of 30% takeninto account. A coherent state PQF isosurface is alsoshown (yellow sphere). The singlet state PQF isosur-face (not shown in Fig. 1) is contained within the coher-ent state PQF isosurface as it is squeezed in all direc-tions. The triplet states isosurfaces smaller sizes are alsoless than those of the coherent state indicating squeez-ing along those directions, while bigger radii are greaterthan that of the coherent state indicating antisqueezingin those directions.The preparation part of the setup is depicted inFig. 2. We generate the MBS j�(�)maci via frequency-

Fig. 2. { Orthogonally polarized squeezed vacuums aregenerated in two type-I BBO crystals and overlapped at apolarizing beamsplitter (PBS). The interferometer is bal-anced using trombone prisms. The dichroic plate (DP) isused for singlet state generation. The measurement partconsists of a Glan prism (GP), a half-wave plate (�=2), aquarter-wave plate (�=4) and two detectors (D1 and D2)with their signals analyzed by the computer (PC)nondegenerate parametric down-conversion (PDC) intwo 2 mm beta barium borate (BBO) crystals with op-tic axes oriented in orthogonal (horizontal and vertical)planes. These crystals are placed into a phase-lockedMach{Zehnder interferometer (MZI) whose input andoutput beam splitters are polarizing ones. The crystalsare pumped by a Nd:YAG laser third harmonic (wave-length �p = 355nm, repetition rate 1 kHz, pulse dura-tion 18 ps, and energy per pulse up to 0.2mJ). At theinput of the MZI the pump is 45� polarized in orderto give equal contribution to PDC in both crystals. Thepump radiation is cut o� after the crystals using dichroicmirrors with 97% re
ectivity and transmittance for thepump and the PDC radiation respectively and using along pass (OG) �lter (not shown in Fig. 2). Each crys-tal is a traveling-wave nondegenerate optical paramet-ric ampli�er with a two-color bright squeezed vacuum[10] at its output. Both squeezed-vacuum beams con-�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 7 { 8 2012 6�



548 I. N.Agafonov, M.V.Chekhova, T. Sh. Iskhakov, B.Kanseri, G. Leuchstaining wavelengths of �1 = 635 nm and �2 = 805nmare orthogonally polarized and leave through the sameport of the MZI. Depending on the phase � between thesqueezed-vacuum beams, the states j�(+)maci or j�(�)maci aregenerated at the output of the MZI. The phase � can bevaried by moving one of the mirrors, placed on a piezo-electric feed.Preparation of the singlet state is the same as inRef. [11]. The phase � is �xed at � by measuringthe variance of S2: it is minimum in the case wherethe j�(�)maci state is prepared. The j�(�)maci state becomesj	(+)maci in a 45�-rotated basis [12]. Using a dichroic waveplate placed into the output beam j	(+)maci is transformedinto j	(�)maci. The dichroic wave plate is made from aquartz crystal with its optical axis oriented at 45�. Itsthickness of 170 �m is chosen in such a way that theordinary-extraordinary phase delays introduced at thewavelengths �1 and �2 di�er by � due to the dispersion.As a result, the plate introduces a � phase between theay1by2 and by1ay2 terms in the expression for j	(+)maci (seeEq. (4)).The measurement part of the setup then �lters thebeam in the transverse wavevector by an iris apertureplaced in the focal plane of a lens with 300 mm focallength. The crystals are also set 300 mm away from thelens. As shown in [10], the in
uence of the unmatchedmodes on the noise reduction is proportional to the num-ber of photons per mode, so it is best to independently�lter each wavelength of the beam in order to have thebest possible mode matching. As it is experimentallycomplicated and the number of photons per mode in ourcase is relatively small (0.1), we use a single aperture.The Stokes parameters measurement is realized bya Glan prism (GP) preceded by an achromatic half-wave plate (HWP, �=2) and a zero-order quarter-waveplate (QWP, �=4). The plates provide close phase-shifts at both wavelengths. The HWP and QWP ori-ented at � and � angles de�ne a unit vector n == fcos' sin �; sin' sin �; cos �g in Stokes space, where� = �=2� 2�; ' = 2� � 4�: (5)This vector corresponds to an arbitrary Stokes ob-servable Ŝn de�ned in a similar way to Eq. (1). Theobservable Ŝn is measured as a di�erence of the pho-ton numbers in the two output channels of the Glanprism. The beam is analyzed without separating thewavelengths or selecting single longitudinal or transversemodes, so Ŝn is essentially multimode.The photon numbers are measured pulse by pulse,using p�i�n diodes followed by charge-sensitive ampli-�ers [13]. The electronic noise is mostly caused by the

ampli�cation circuit and is equivalent to 180 input pho-tons. On average each pulse contains about 105 pho-tons, hence the shot noise (about 300 photons) exceedsthe electronic noise almost twice. For each pump pulse,the output pulses of the detectors are time-integratedby means of an analog-digital card. The data are thenprocessed to obtain the histograms of the measuredStokes parameters p(S; �; ') (see Eq. (3)).According to Eq. (3), in order to calculate thePQF one has to know the Stokes observable distributionp(S; �; ') for all possible directions n (i.e., for all angles� and '). As it is not feasible in experiment, the integra-tion and derivation in Eq. (3) has to be approximated by�nite sums of discrete functions p(Si; �j ; 'k) measuredfor a discrete set of angles �j and 'k. In our case thestates in consideration are Gaussian, so we approximatethe obtained distributions by Gaussian functionspjk(S) � Ajkp2� exp(� (S � S0jk)22�2jk ) ; (6)where Ajk , �jk and S0jk are amplitudes, widths and dis-placements of the distributions obtained for �j and 'k.Substituting the distribution (6) into (3) we getW (S) = � 12�2 JXj=0 KXk=0 p00jk (S) sin �j�'��; (7)S = S1 sin �j cos'k + S2 sin �j sin'k + S3 cos �j ;where p00jk(S) is the second-order partial derivative withrespect to S, �j = j��, and 'k = k�', J+1 and K+1are the numbers of measurements for each angle. Thetotal number of measurements is thus (J +1) � (K + 1).In our experiment a total of 360 measurements aremade for each state: the HWP is scanned from 0� to87:5� with a step of 2:5� and the QWP is scanned from0� to 45� with a step of 5�. According to Eq. (5), thisresults in set of measurements covering the upper hemi-sphere in the 3D Stokes space. Given that the noiseand the signal are independent and that our states areGaussian, the electronic noise is deducted from the mea-sured signals by subtracting its variance from that of themeasured signal.By using an intensity stabilized He-Ne laser we pre-pare a coherent state (CS) that is used as a referencefor quantifying squeezing. As our measurement systemis adapted for the pulsed regime, a chopper rotating at aspeed of 90 revolutions per second is used to obtain a co-herent source with pulses of about 10 �s duration. Thesum signal for the CS is set equal to that of the squeezedstates. Our coherent state is not perfectly shot-noise lim-ited due to some unavoidable excess 
uctuations present�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 7 { 8 2012



Polarization tomography : : : 549in the source so it is in fact a pseudo-coherent state(PCS).Horizontal polarization of our PCS results in an un-balanced detection of all the Stokes observables S ex-cept for those that are in the S2�S3 plane (the so calleddark plane). This leads to a PQF elongated in the S1direction. In order to illustrate this e�ect we calculatethe variance of the di�erence of photon numbers in twoindependent modes for a coherent state using the quan-tum model. In terms of the normalized second-orderautocorrelation functions it is written as [14]:Var(N�) = �g(2) � 1� hN�i2 + hN1i+ hN2i ; (8)where g(2) is autocorrelation function (that coincidesin this case with the crosscorrelation function as bothmodes have the same statistics), N� � N1 � N2 is thedi�erence signal (in our case it is actually a Stokes ob-servable). For an ideal coherent source g(2) = 1 and thevariance of di�erence photon number is simply given bythe last two terms in Eq. (8), i.e. the shot noise level.In practice, for PCS, g(2) > 1 and the �rst term cangreatly a�ect the di�erence variance in the unbalancedcase, especially when N� � 1. To reconstruct the the-oretical PQF we calculate the variance of the di�erencesignal for each measurement using Eq. (8). The squareroot of this value is used as �jk in Eq. (7). To displacethe state to the origin of the Stokes space we set S0jkto zero in Eq. (7). The theoretical PQF reconstructedthis way is almost indistinguishable from the experimen-tal PQF with S0jk reduced to zero. This proves thatthe unbalanced detection is the cause of non-sphericalshape of PQF for our PCS. To quantify the similarityof the considered PCS PQFs we calculate the �delity.Fidelity (Bhattacharyya coe�cient) is a measure of sim-ilarity (overlap) of two PQFs and is de�ned as follows[15] Fij �XS qWi(S)Wj(S); (9)where S spans the domain of PQFs with values greaterthan 1=e of their maximum values. F changes from 1to 0, with 1 indicating that the PQFs are identical and0 indicates that they don't overlap at all. The �delityvalue calculated for the theoretical PQF and experimen-tal PQF is 0.996.Displacement of the PCS (which includes a strongclassical component) PQF from the origin of the Stokesspace is equal to the total number of photons n whileits width corresponds to pn. In our case n � 105, sowidth and displacement of the PCS QPF di�er by morethan 300 times. This rises the problem of the recon-struction quality of the PQF for the PCS as it subtends

a solid angle on the order of 10�5 in the Stokes space.To analyze this problem we calculate the theoretical �-delity of the PQF located at the origin using Eq. (8)and compare it with the PCS PQF displaced from itsoriginal position closer to the origin. The displacementis realized by reducing all the parameters S0jk in Eq.(6). A plot showing �delity versus the distance to thedisplaced PQF maximum is presented in Fig. 3. The

Fig. 3. Fidelity dependence on the distance to the PQFmaximum value for the coherent state. The distance isnormalized to the CS PQF width in the dark planedistance is normalized to the CS PQF width in the darkplane. According to our results, the quality of CS PQFreconstruction from 360 measurements of the Stokes ob-servables is satisfactory for displacements of up to 10widths from the origin (the original position of the max-imum is 580 widths away from the origin).In order to reconstruct the original (non-displaced)PQF of a coherent or a squeezed coherent state moremeasurements are needed. It shall be noted that the re-construction quality problem does not a�ect the MBStomography as their PQF are located exactly at the ori-gin of the Stokes space (see Fig. 1).The results of the experimental data processing us-ing Eq. (7) are shown in Fig. 4. The 3D images ((a),(e), and (i)) were obtained by plotting the isosurfaceW (S) = maxW (S)=pe of the PQFs. The imagesbelow the 3D plots are 2D contour plots (colour cod-ing scales are di�erent) of the corresponding states:W (S1; S2; 0) for (b), (f), and (j); W (0; S2; S3) for (c),(g), and (k); W (S1; 0; S3) for (d), (h), and (l). Sincethe pseudo-coherent state is horizontally polarized, itsPQF is greatly displaced from the origin in contrastwith unpolarized singlet and triplet states. PCS po-larization quasiprobability function has its maximum atpoint (346�103, 31.5�103, 14�103) photons in the Stokesspace. Nonzero values of S1 and S2 indicate that the�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 7 { 8 2012
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Fig. 4. (Color online) Polarization quasiprobability functions 1=pe isosurface in 3D and its 2D contour plots (colour codingscales are not �xed) for: (a){(d) singlet, (e){(h) triplet and (i){(l) pseudo-coherent states. Contour plots (b), (f), (j) corre-spond to S1 �S2 plane, (c), (g), (k) { to S2 �S3 plane, (d), (h), (l) { to S1 �S3 plane. Semi-transparent blue spheres on (a)and (e) represent the corrected coherent statePCS is not perfectly (100%) horizontally polarized ow-ing to the fact that the light beam passes through severalre
ections by the mirrors present in the setup. Takinginto account the above mentioned reconstruction qualityproblem, the parameters S0jk in Eq. (6) were reducedto 0 when plotting the PQF function in Fig. 4i{l. In or-der to visualize the di�erence between the MBS stateand the CS, a blue semi-transparent sphere is plottedon Fig. 4a and e. It represents the PQF of a corrected
CS with the radius equal to that of the PCS PQF in thedark plane.To characterize squeezing, the variance of eachStokes observable S of the observed state �2S(	) has tobe compared to that of a shot-noise-limited state, i.e. acoherent state �2S(coh). The width of the PQF (shownin Fig. 4) along direction n corresponds to the Stokesobservable standard deviation �S, so one can easily es-timate the amount of squeezing using the PQF according�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 7 { 8 2012



Polarization tomography : : : 551to the following de�nition of Polarization Noise Reduc-tion Factor (PNRF)PNRF(n) � �2S(	)�2S(coh) : (10)Depending on the choice of the Stokes observable S,the amount of squeezing for a given state will, in thegeneral case, vary. In order to calculate and comparethe PNRF along S1 � S3 directions for the singlet andtriplet states we approximate the reconstructed PQFsby a 3D Gaussian functions of the formfW (S) = Ap2� exp�� S212�21 � S222�22 � S232�32� ; (11)whereA is the amplitude and �1;2;3 are the widths. In or-der to account for the non-spherical shape of our pseudo-coherent state PQF we approximate it by a Gaussianfunction (11) assuming �2 = �3=�coh. In this case thetrue width of the CS PQF is given by the �coh as it cor-responds to the dark plane (balanced detection). Thiswidth is used to calculate the �2S(coh) in Eq. (10) andto plot the semi-transparent blue spheres correspondingto the corrected CS PQF in Fig. 4. Substituting the ob-tained widths for the singlet and triplet states into (10)we get the PNRF values along the S1 � S3 directions(see Table).PNRF for singlet and triplet state along S1 � S3directionsState PNRF(S1) PNRF(S2) PNRF(S3)j	(�)maci 0.74 0.50 0.58j�(�)maci 1.31 0.77 1.17As one can see from Fig. 4, the singlet state PQF isvery similar to the theoretical one: it is located at theorigin of the Stokes space showing that all the Stokesparameters are zero (the state is unpolarized in the �rstorder of intensity) and it is smaller than the CS PQFin all directions. Having almost spherical isosurface itsmean PNRF value is 0.6 (see Table). The triplet statePQF clearly shows its oblong shape: it is squeezed in S2direction (smaller than the CS) and antisqueezed in S1and S3 directions (bigger than the CS). This indicatesthat the prepared triplet state is j�(�)maci (see Fig. 1).In conclusion we have experimentally reconstructedpolarization quasiprobability functions for two bright
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