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Polarization tomography of bright states of light
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Polarization quantum tomography is performed on 4-mode squeezed vacuum states. Three-dimensional
polarization quasiprobability functions are obtained and compared to that of an equal intensity coherent state.
These distributions clearly demonstrate the difference in the polarization properties of the considered states.
The reconstruction quality of the coherent state distribution is also analysed by comparing the theoretically

and experimentally obtained shapes for this state.

Polarization properties of nonclassical light are im-
portant to quantum optics especially in the continuous-
variables case where Stokes polarimetry method is often
used [1]. Although it is an experimentally convenient
method it only provides the basic polarization character-
istics such as mean values and variances of the Stokes op-
erators that are sufficient to characterize only Gaussian
states. In the general case it is not feasible to analyze
an infinite number of central moments, so in order to
gain further insight into the state properties nonclas-
sical polarization quasiprobability function (PQF) has
to be considered. It was introduced by Karassiov and
coworkers [2, 3] and has already been experimentally re-
constructed for bright two-mode polarization squeezed
(PS) vacuum [2, 4], bright PS coherent state and non-
squeezed coherent state [5]. A state is called PS if the
variance of at least one of its Stokes parameters is less
than that of the coherent state of the same intensity.

In this paper we perform polarization quantum to-
mography to reconstruct the quasiprobability function
W (S) of bright four-mode PS vacuum states. Here,
S = {851,852, Ss} are the corresponding Stokes observ-
ables. These are non-classical Gaussian states also
known as macroscopic Bell states (MBS) that were the-
oretically predicted in [6] and experimentally observed
in [7, 8]. Using coherent state reconstruction as an ex-
ample, we analyze the reconstruction quality of our to-
mography technique.

PQF is defined as the Fourier transform of the po-
larization characteristic function x(u) [2]
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where the angle brackets denote averaging over the po-
larization state and 5'1,2,3 are the Stokes operators.
PQF serves as a tool to visualize a polarization state
by depicting its polarization properties in a vivid man-
ner. It also provides an easy way to calculate the distri-
bution p(S) for an arbitrary Stokes parameter S

S=S-n=_5;sinfcosp + S2sinfsinp + Sz cosf,
(1)

where n is the unit normal vector and € and ¢ are the
spherical angles. The probability distribution p(S) is
given by the planar projection of PQF onto a line given
by vector n:

p(S):///a(s'-n—S)W(s')ds'. 2)

Inverting Eq. (2) and integrating by parts we get [3]

_ L TP 6, p) .
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This expression serves as the basis for polarization
tomography and it turns out to be equivalent to an in-
verse Radon transform of the experimentally measurable
histograms p(S). Inversion symmetry of the Stokes op-
erators measurement implies that it is sufficient to mea-
sure the histograms p(S) within just a hemisphere in
order to carry out a complete state reconstruction.

In this paper the PQF analysis is applied to MBS
which are higher photon number generalizations of two-
photon Bell states. The prepared MBS in our case con-
tain four modes: two polarization and two wavelength
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ones. Theoretically MBS have been considered in [6]
and can be written as

[T = exp {1" (a{b; + bIa;) + H.C.} |vac),

mac

|®E)) = exp {F (a{a; + blbg) + H.C.} |vac),

where I' is the parametric gain coefficient, af, bt are pho-
ton creation operators in the horizontal and vertical po-
larization modes, respectively and the subscripts 1, 2
denote wavelength modes. These states are generated
by strongly pumping a standard setup used to produce
two-photon Bell states. At the output of such a setup
photon pairs, quartets, sextets and so on are produced
in two wavelength and two polarization modes in such a
way that the conjugate modes are correlated in photon
numbers.

Similar to two-photon Bell states, all MBS are unpo-
larized in the first order of intensity. Thus their PQF are
centered at the origin of the Stokes space. Theoretically
each of the triplet states is completely squeezed in one of
the three axes (Stokes observables) while antisqueezed
in the other two axes resulting in a disk-like form of
the PQF. The singlet state is completely squeezed in
all three directions and thus unpolarized in all orders of
intensity [9]. Experimental procedures introduce losses
(detectors non-unity quantum efficiency, optical losses,
imperfect signal and idler mode-matching) that result
in non-perfect squeezing [10]. Fig.1 shows the experi-

Fig. 1. (Color online) Experimental representation of PQF
for triplet Macroscopic Bell states with losses in the setup
taken into account: |¥..) — blue, |®f,.) — green, and
|®mac) — red; coherent state (displaced to the origin) —
yellow
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mental expectation for isosurfaces of PQF of the triplet
macroscopic Bell states with total losses of 30% taken
into account. A coherent state PQF isosurface is also
shown (yellow sphere). The singlet state PQF isosur-
face (not shown in Fig.1) is contained within the coher-
ent state PQF isosurface as it is squeezed in all direc-
tions. The triplet states isosurfaces smaller sizes are also
less than those of the coherent state indicating squeez-
ing along those directions, while bigger radii are greater
than that of the coherent state indicating antisqueezing
in those directions.

The preparation part of the setup is depicted in
Fig.2. We generate the MBS |<I>£,ﬁ)c) via frequency-

PBS
Measurement
2
7
=)
Z
Preparation
Fig.2. — Orthogonally polarized squeezed vacuums are

generated in two type-I BBO crystals and overlapped at a
polarizing beamsplitter (PBS). The interferometer is bal-
anced using trombone prisms. The dichroic plate (DP) is
used for singlet state generation. The measurement part
consists of a Glan prism (GP), a half-wave plate (\/2), a
quarter-wave plate (A/4) and two detectors (D1 and D2)
with their signals analyzed by the computer (PC)

nondegenerate parametric down-conversion (PDC) in
two 2 mm beta barium borate (BBO) crystals with op-
tic axes oriented in orthogonal (horizontal and vertical)
planes. These crystals are placed into a phase-locked
Mach-Zehnder interferometer (MZI) whose input and
output beam splitters are polarizing ones. The crystals
are pumped by a Nd:YAG laser third harmonic (wave-
length A\, = 355nm, repetition rate 1kHz, pulse dura-
tion 18 ps, and energy per pulse up to 0.2mJ). At the
input of the MZI the pump is 45° polarized in order
to give equal contribution to PDC in both crystals. The
pump radiation is cut off after the crystals using dichroic
mirrors with 97% reflectivity and transmittance for the
pump and the PDC radiation respectively and using a
long pass (OG) filter (not shown in Fig.2). Each crys-
tal is a traveling-wave nondegenerate optical paramet-
ric amplifier with a two-color bright squeezed vacuum
[10] at its output. Both squeezed-vacuum beams con-
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taining wavelengths of A\; = 635 nm and A, = 805nm
are orthogonally polarized and leave through the same
port of the MZI. Depending on the phase § between the
squeezed-vacuum beams, the states |<I>£$)c) or |‘I>£n_a)c> are
generated at the output of the MZI. The phase § can be
varied by moving one of the mirrors, placed on a piezo-
electric feed.

Preparation of the singlet state is the same as in
Ref. [11]. The phase ¢ is fixed at = by measuring
the variance of S3: it is minimum in the case where
the |<I>£r;)c) state is prepared. The |‘I>£,;)c> state becomes
|\Il£,}’;)c) in a 45°-rotated basis [12]. Using a dichroic wave
plate placed into the output beam |l115;,;)c) is transformed
into |‘I’1(1;)c> The dichroic wave plate is made from a
quartz crystal with its optical axis oriented at 45°. Its
thickness of 170 pym is chosen in such a way that the
ordinary-extraordinary phase delays introduced at the
wavelengths Ay and A, differ by 7 due to the dispersion.
As a result, the plate introduces a m phase between the
albl and bial terms in the expression for |\Il,($)c) (see
Eq. (4)).

The measurement part of the setup then filters the
beam in the transverse wavevector by an iris aperture
placed in the focal plane of a lens with 300 mm focal
length. The crystals are also set 300 mm away from the
lens. As shown in [10], the influence of the unmatched
modes on the noise reduction is proportional to the num-
ber of photons per mode, so it is best to independently
filter each wavelength of the beam in order to have the
best possible mode matching. As it is experimentally
complicated and the number of photons per mode in our
case is relatively small (0.1), we use a single aperture.

The Stokes parameters measurement is realized by
a Glan prism (GP) preceded by an achromatic half-
wave plate (HWP, A/2) and a zero-order quarter-wave
plate (QWP, A/4). The plates provide close phase-
shifts at both wavelengths. The HWP and QWP ori-
ented at o and ( angles define a unit vector n =
= {cos psinf,sin ¢ sinf, cosf} in Stokes space, where

0=m/2-283, p =206 — 4a. (5)

This vector corresponds to an arbitrary Stokes ob-
servable S, defined in a similar way to Eq. (1). The
observable S'n is measured as a difference of the pho-
ton numbers in the two output channels of the Glan
prism. The beam is analyzed without separating the
wavelengths or selecting single longitudinal or transverse
modes, so S, is essentially multimode.

The photon numbers are measured pulse by pulse,
using p—i—n diodes followed by charge-sensitive ampli-
fiers [13]. The electronic noise is mostly caused by the

amplification circuit and is equivalent to 180 input pho-
tons. On average each pulse contains about 10° pho-
tons, hence the shot noise (about 300 photons) exceeds
the electronic noise almost twice. For each pump pulse,
the output pulses of the detectors are time-integrated
by means of an analog-digital card. The data are then
processed to obtain the histograms of the measured
Stokes parameters p(S, 8, p) (see Eq. (3)).

According to Eq. (3), in order to calculate the
PQF one has to know the Stokes observable distribution
p(S, 8, p) for all possible directions n (i.e., for all angles
0 and ¢). As it is not feasible in experiment, the integra-
tion and derivation in Eq. (3) has to be approximated by
finite sums of discrete functions p(S;, 8;, ¢r) measured
for a discrete set of angles 6; and ¢;. In our case the
states in consideration are Gaussian, so we approximate
the obtained distributions by Gaussian functions

pik(5) = %p{—%} ()
J

where Aji, o and Spjr are amplitudes, widths and dis-
placements of the distributions obtained for 6; and ¢y.
Substituting the distribution (6) into (3) we get

J K
1 .
W(S) = ~53 E E Dk (S) sin0;ApAb, (7)

j=0 k=0

S = S1sinf; cos i, + Sosinb; sin py + Sz cos b,

where pl;; (S) is the second-order partial derivative with
respect to S, §; = jAf, and ¢, = kAp, J+1and K +1
are the numbers of measurements for each angle. The
total number of measurements is thus (J +1) - (K + 1).

In our experiment a total of 360 measurements are
made for each state: the HWP is scanned from 0° to
87.5° with a step of 2.5° and the QWP is scanned from
0° to 45° with a step of 5°. According to Eq. (5), this
results in set of measurements covering the upper hemi-
sphere in the 3D Stokes space. Given that the noise
and the signal are independent and that our states are
Gaussian, the electronic noise is deducted from the mea-
sured signals by subtracting its variance from that of the
measured signal.

By using an intensity stabilized He-Ne laser we pre-
pare a coherent state (CS) that is used as a reference
for quantifying squeezing. As our measurement system
is adapted for the pulsed regime, a chopper rotating at a
speed of 90 revolutions per second is used to obtain a co-
herent source with pulses of about 10 ps duration. The
sum signal for the CS is set equal to that of the squeezed
states. Our coherent state is not perfectly shot-noise lim-
ited due to some unavoidable excess fluctuations present
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in the source so it is in fact a pseudo-coherent state
(PCS).

Horizontal polarization of our PCS results in an un-
balanced detection of all the Stokes observables S ex-
cept for those that are in the Sy —.S3 plane (the so called
dark plane). This leads to a PQF elongated in the S;
direction. In order to illustrate this effect we calculate
the variance of the difference of photon numbers in two
independent modes for a coherent state using the quan-
tum model. In terms of the normalized second-order
autocorrelation functions it is written as [14]:

Var(N-) = (9 = 1) (N_)* + (N1) + (Na), (8)

where g(?) is autocorrelation function (that coincides
in this case with the crosscorrelation function as both
modes have the same statistics), N_ = N; — N» is the
difference signal (in our case it is actually a Stokes ob-
servable). For an ideal coherent source g*) = 1 and the
variance of difference photon number is simply given by
the last two terms in Eq. (8), i.e. the shot noise level.
In practice, for PCS, g(® > 1 and the first term can
greatly affect the difference variance in the unbalanced
case, especially when N_ > 1. To reconstruct the the-
oretical PQF we calculate the variance of the difference
signal for each measurement using Eq. (8). The square
root of this value is used as o;; in Eq. (7). To displace
the state to the origin of the Stokes space we set Sy
to zero in Eq. (7). The theoretical PQF reconstructed
this way is almost indistinguishable from the experimen-
tal PQF with Soj; reduced to zero. This proves that
the unbalanced detection is the cause of non-spherical
shape of PQF for our PCS. To quantify the similarity
of the considered PCS PQFs we calculate the fidelity.
Fidelity (Bhattacharyya coefficient) is a measure of sim-
ilarity (overlap) of two PQFs and is defined as follows

[15]
Fij =) 1/ Wi(S)W;(8), (9)
S

where S spans the domain of PQFs with values greater
than 1/e of their maximum values. F' changes from 1
to 0, with 1 indicating that the PQFs are identical and
0 indicates that they don’t overlap at all. The fidelity
value calculated for the theoretical PQF and experimen-
tal PQF is 0.996.

Displacement of the PCS (which includes a strong
classical component) PQF from the origin of the Stokes
space is equal to the total number of photons n while
its width corresponds to /n. In our case n ~ 105, so
width and displacement of the PCS QPF differ by more
than 300 times. This rises the problem of the recon-
struction quality of the PQF for the PCS as it subtends
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a solid angle on the order of 1075 in the Stokes space.
To analyze this problem we calculate the theoretical fi-
delity of the PQF located at the origin using Eq. (8)
and compare it with the PCS PQF displaced from its
original position closer to the origin. The displacement
is realized by reducing all the parameters Sp;; in Eq.
(6). A plot showing fidelity versus the distance to the
displaced PQF maximum is presented in Fig.3. The
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Fig. 3. Fidelity dependence on the distance to the PQF
maximum value for the coherent state. The distance is
normalized to the CS PQF width in the dark plane

distance is normalized to the CS PQF width in the dark
plane. According to our results, the quality of CS PQF
reconstruction from 360 measurements of the Stokes ob-
servables is satisfactory for displacements of up to 10
widths from the origin (the original position of the max-
imum is 580 widths away from the origin).

In order to reconstruct the original (non-displaced)
PQF of a coherent or a squeezed coherent state more
measurements are needed. It shall be noted that the re-
construction quality problem does not affect the MBS
tomography as their PQF are located exactly at the ori-
gin of the Stokes space (see Fig.1).

The results of the experimental data processing us-
ing Eq. (7) are shown in Fig.4. The 3D images ((a),
(e), and (i)) were obtained by plotting the isosurface
W (S) = maxW (S)/+/e of the PQFs. The images
below the 3D plots are 2D contour plots (colour cod-
ing scales are different) of the corresponding states:
W (S, S2,0) for (b), (f), and (j); W (0, Sa, S3) for (c),
(g), and (k); W(S54,0,S3) for (d), (h), and (1). Since
the pseudo-coherent state is horizontally polarized, its
PQF is greatly displaced from the origin in contrast
with unpolarized singlet and triplet states. PCS po-
larization quasiprobability function has its maximum at
point (346-10%, 31.5-10%, 14-10%) photons in the Stokes
space. Nonzero values of S; and S, indicate that the
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Fig. 4. (Color online) Polarization quasiprobability functions 1/4/e isosurface in 3D and its 2D contour plots (colour coding
scales are not fixed) for: (a)—(d) singlet, (e)—(h) triplet and (i)—(1) pseudo-coherent states. Contour plots (b), (f), (j) corre-
spond to S; — S> plane, (c), (g), (k) — to Sz — Ss plane, (d), (h), (1) — to S1 — S3 plane. Semi-transparent blue spheres on (a)

and (e) represent the corrected coherent state

PCS is not perfectly (100%) horizontally polarized ow-
ing to the fact that the light beam passes through several
reflections by the mirrors present in the setup. Taking
into account the above mentioned reconstruction quality
problem, the parameters Syj; in Eq. (6) were reduced
to 0 when plotting the PQF function in Fig.4i-1. In or-
der to visualize the difference between the MBS state
and the CS, a blue semi-transparent sphere is plotted
on Fig.4a and e. It represents the PQF of a corrected

CS with the radius equal to that of the PCS PQF in the
dark plane.

To characterize squeezing, the variance of each
Stokes observable S of the observed state A2S(¥) has to
be compared to that of a shot-noise-limited state, i.e. a
coherent state A?S(coh). The width of the PQF (shown
in Fig.4) along direction n corresponds to the Stokes
observable standard deviation AS, so one can easily es-
timate the amount of squeezing using the PQF according
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to the following definition of Polarization Noise Reduc-
tion Factor (PNRF)

PNRF(n) = A%S(¥)

~ A25(coh)’ (10)

Depending on the choice of the Stokes observable .S,
the amount of squeezing for a given state will, in the
general case, vary. In order to calculate and compare
the PNRF along S; — S3 directions for the singlet and
triplet states we approximate the reconstructed PQFs
by a 3D Gaussian functions of the form

2 2 2
cof S-S 81w

20% 203 203

where A is the amplitude and 01,2 3 are the widths. In or-
der to account for the non-spherical shape of our pseudo-
coherent state PQF we approximate it by a Gaussian
function (11) assuming oy = 03=0con- In this case the
true width of the CS PQF is given by the o.on as it cor-
responds to the dark plane (balanced detection). This
width is used to calculate the A%S(coh) in Eq. (10) and
to plot the semi-transparent blue spheres corresponding
to the corrected CS PQF in Fig. 4. Substituting the ob-
tained widths for the singlet and triplet states into (10)
we get the PNRF values along the S; — S3 directions
(see Table).

PNRF for singlet and triplet state along S;1 — S3

directions
State | PNRF(S1) | PNRF(S2) | PNRF(S3)
i) 0.74 0.50 0.58
B o) 1.31 0.77 1.17

As one can see from Fig. 4, the singlet state PQF is
very similar to the theoretical one: it is located at the
origin of the Stokes space showing that all the Stokes
parameters are zero (the state is unpolarized in the first
order of intensity) and it is smaller than the CS PQF
in all directions. Having almost spherical isosurface its
mean PNRF value is 0.6 (see Table). The triplet state
PQF clearly shows its oblong shape: it is squeezed in S,
direction (smaller than the CS) and antisqueezed in S;
and S3 directions (bigger than the CS). This indicates
that the prepared triplet state is |*I>,(n;)c> (see Fig.1).

In conclusion we have experimentally reconstructed
polarization quasiprobability functions for two bright
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four-mode squeezed vacuum states (singlet and triplet)
and for a pseudo-coherent state. The singlet state |\Il£r;)c)
PQF has an almost spherical isosurface and the triplet
state |*I>1({a)c) demonstrates its oblate shape. We have
demonstrated that the quality of PQF reconstruction for
a pseudo-coherent state (measured as fidelity) degrades
as the PQF maximum gets further away from the origin.
It is clear that much more than 360 measurements are re-
quired to reconstruct highly displaced states with good
fidelity values. At the same time, this is not an issue for
reconstructing unpolarized states (like MBS) PQFs as
they are located at the origin of the Stokes space.
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