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 2012 November 10Pion form factor in the range �10 � s � 1 GeV2N.N. Achasov+1), A.A.Kozhevnikov+�1)+Laboratory of Theoretical Physics, Sobolev Institute for Mathematics SB of the RAS, 630090 Novosibirsk, Russia�Novosibirsk State University, 630090 Novosibirsk, RussiaSubmitted 25 September 2012Based on the �eld-theory-inspired approach, a new expression for the pion form factor F� is proposed.It takes into account the pseudoscalar meson loops �+�� and K �K and the mixing of �(770) with heavier�(1450) and �(1700) resonances. The expression possesses correct analytical properties and describes thedata in the wide range of the energy squared �10 � s � 1 GeV2 without introducing the phenomenologicalBlatt{Weisskopf range parameter R�.The electromagnetic form factor of the pion F� is animportant characteristic of the low energy phenomena inparticle physics related with the hadronic properties ofthe electromagnetic current in the theoretical scheme ofthe vector dominance model [1{3]. There are a numberof expressions for this quantity used in the analysis ofexperimental data in the time-like range s > 0. Hereafters is the center-of-mass-energy squared. The simplest ap-proximate vector dominance model expression based onthe e�ective 
 � � coupling / ��A� [3],F�(s) = m2�g���=g�m2� � s� ips����(s) ; (1)does not possess the correct analytical properties uponthe continuation to the unphysical region 0 � s < 4m2�and further to the spacelike region s � 0, nor does ittakes into account the mixing of the isovector �-like res-onances. Since, phenomenologically [4],g���g� = �9m�������ee2�2q3� �1=2 � 1:20 (2)the correct normalization F�(0) = 1 is satis�ed byEq. (1) only approximately, provided ����(s) vanishesat s � 4m2�. Hereafter, � = 1=137 stands for the�ne structure constant. The formula of Gounaris andSakurai [5] respects the normalization condition and hascorrect analytical properties. However, being based onsome sort of e�ective radius approximation for the single�(770) resonance, it is not suited for taking into accountthe mixing of �(770) with heavier isovector mesons. Theexpression based on the gauge invariant 
 � � coupling/ ���F�� ,F�(s) = 1 + sg���=g�m2� � s� ips����(s) ; (3)1)e-mail: achasov@math.nsc.ru; kozhev@math.nsc.ru

respects the correct normalization, but does not havecorrect analytical properties and breaks unitarity. Theearlier expression [6] for F� takes into account thestrong isovector mixing, but the normalization is sat-is�ed within the accuracy 20%.On the other hand, since the pioneer works [7, 8],the space-like region is considered as the test ground ofthe perturbative QCD predictions for F� addressing, inparticular, the issues such as where the QCD asymptoticstarts.In the present work the expression for the pionform factor is obtained which has correct analyticalproperties in both the space-like and time-like domainsand takes into account the mixing of �(770) with theheavier resonances �(1450) and �(1700). Remarkably,it does require the phenomenological Blatt{Weisskopfrange factor R�. By restricting the consideration tothe pseudoscalar meson loops PP = �+��, K �K ad-mitting the analytical treatment and valid at energiesbelow 1 GeV, the new expression is found and com-pared with the existing data on F� collected with thedetectors SND [9], CMD-2 [10], KLOE [11], and BaBaR[12] at 4m2� � s � 1 GeV2. With the resonance parame-ters found in this region the continuation to the region�10 GeV2 � s � 0 is made and compared with theexisting experimental data [13{16].The new expression for the pion form factor is rep-resented in the formF�(s) = (g
�1 ; g
�2 ; g
�3)G�10B@ g�1��g�2��g�3�� 1CA++ g
!��1!D!� (g11g�1�� + g12g�2��++ g13g�3��) : (4)It takes into account both the strong isovector�(770)��(1450)��(1700) mixing and the small�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 9 { 10 2012 627



628 N.N.Achasov, A. A.Kozhevnikov�(770)�!(782) one, automatically respects the currentconservation condition F�(0) = 1, and possesses correctanalytical properties over entire s plane. The notationsare as follows. �1 � �(770), �2 � �(1450), �3 � �(1700);G = 0B@ D�1 ���1�2 ���1�3���1�2 D�2 ���2�3���1�3 ���2�3 D�3 1CAis the matrix of inverse propagators, gij are itsmatrix elements multiplied by � = detG; g
V == m2V =gV , where gV enters the leptonic partialwidths like �V!e+e� = 4��2mV =3g2V ; D�i = m2�i �� s � ��i�i . The diagonal polarization operators are��i�i = g2�i�� ��(s;m2�i ;m2�) + 12�(s;m2�i ;m2K)�, thenon-diagonal ones are expressed through the diagonalone: ��1�2;3 = g�2;3��g�1�� ��1�1 ;��2�3 = g�2��g�3��g2�1�� ��1�1 + sa23: (5)The quantity a23 is free parameter. The !(782) prop-agator is D! = m2! � s � ips�!(s), where �!(s)includes the 3� and radiative decay modes, ��1! == sm2!�0�1! + ips �13�!�
(s) + 3�!�
(s)� is responsiblefor the �(770)�!(782) mixing.The expression for the polarization operator of thevector meson V is obtained from the dispersion repre-sentation:�(PP )V V (s)s = g2V PP6�2 Z 14m2P q3PP (s0)s03=2(s0 � s� i")ds0: (6)Remaining logarithmic divergence cancels after sub-tracting the real part of the above expression at s = m2V .The resulting expression is represented in the form�(s;m2V ;m2P ) = �0 +�1, where�0 = s48�2 �8m2P � 1m2V � 1s�+ v3P (m2V )�� ln 1 + vP (m2V )1 + vP (m2V )�(mV � 2mP )�� 2�v3P (m2V ) arctan 1�vP �(2mP �mV )� ;�1 = sv3P (s)48�2 �i� � ln 1 + vP (s)1� vP (s)� �(s� 4m2P ) ++ 2�v3P (s) arctan 1�vP (s)�(4m2P � s)�(s) �� v3P (s) ln vP (s) + 1vP (s)� 1�(�s); (7)

and vP (s) = p1� 4m2P =s, �vP (s) = p4m2P =s� 1, � isthe step function. The necessary details of the derivationand parametrization are given elsewhere [17].The quantity to �t is the bare cross section�bare = 8��23s5=2 jF�(s)j2q3�(s) h1 + �� a(s)i ; (8)where F�(s) is given by Eq. (4), q�(s) = psv�(s)=2is the momentum of the �nal pion, and the functiona(s) allows for the radiation of a photon by the �-nal pions in the point-like approximation [18{21]. Themasses of the heavier vector mesons a kept �xed: m�2 == 1450MeV, m�3 = 1700MeV. The set of free para-meters is m�1 , g�1��, g�1 , m!, g!, �0�1!, g�2��, g�2 ,g�3��, and a23. Their obtained values, found from �t-ting the bare cross section Eq. (8), side-by-side withthe corresponding �2 per number of degrees of freedom,are listed in Table separately for the four independentmeasurements of SND [9], CMD-2 [10], KLOE [11], andthe BaBaR data [12] restricted to the low-energy rangeps � 1GeV. The bare cross section evaluated withthe parameters of Table is compared with the SND [9],CMD-2 [10], KLOE [11], and BaBaR [12] data shown

Fig. 1. The bare cross section, Eq. (8), calculated with theresonance parameters obtained from �tting the SND data[9] listed in Table�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 9 { 10 2012



Pion form factor in the range �10 � s � 1 GeV2 629The resonance parameters found from �tting the data SND [9], CMD-2 [10], KLOE10 [11], and the BaBaR data [12]restricted to the energies ps � 1 GeVParameter SND CMD-2 KLOE10 BaBaRm�1 , MeV 773:76� 0:21 774:70 � 0:26 774:36 � 0:12 773:92� 0:10g�1�� 5:798� 0:006 5:785� 0:008 5:778 � 0:006 5:785� 0:004g�1 5:130� 0:004 5:193� 0:006 5:242 � 0:003 5:167� 0:002m!, MeV 781:76� 0:08 782:33 � 0:06 782:94 � 0:11 782:04� 0:10g! 17:13� 0:30 18:43� 0:47 18:27 � 0:45 17:05� 0:29�0�1!; 103 GeV2 4:00� 0:07 3:97� 0:10 3:98� 0:09 4:00� 0:06g�2�� 0:71� 0:35 0:79� 0:26 0:019 � 0:004 0:21� 0:04g�2 8:0� 4:4 7:6� 3:4 0:22� 0:07 4:0� 1:0g�3�� 0:20+1:20�0:17 0:76� 0:75 0:055+0:088�0:043 0:011+0:479�0:007a23 0:002� 0:011 �0:016� 0:057 �0:014 � 0:040 �0:0005� 0:0009�2=Nd:o:f 54/35 34/19 87/65 216/260r� [fm] 0:635� 0:054 0:646� 0:059 0:668 � 0:039 0:668� 0:053

Fig. 2. The same as in Fig. 1, but evaluated with the para-meters obtained from �tting the CMD-2 data [10]in Figs. 1, 2, 3, and 4, respectively. The bottom line ofthis Table shows the values of the pion charge radius,r� =q6dF�(s)ds js!0, calculated with the resonance para-meters listed in the Table. For comparison, the averagedvalue of the pion charge radius cited by the PDG [4] isr� = 0:672� 0:008 fm.
Fig. 3. The same as in Fig. 1, but evaluated with the para-meters obtained from �tting the KLOE-2010 data [11]An important check of the expression for the pionform factor Eq. (4) and the consistency of the �ts isthe continuation to the space-like region s < 0 accessi-ble in the scattering processes. To this end, one shouldtake the expression for F�(s) at s < 0. Having in mindthat the �(770)�!(782) mixing in the region s < 0 isnegligibly small one can calculate F�(s) in this region.�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 9 { 10 2012
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Fig. 4. The same as in Fig. 1, but evaluated with the para-meters obtained from �tting the BaBaR data [12] restrictedto the energies ps � 1GeVThe results are shown in Fig. 5, where the comparisonwith the data [13{16] is presented in the case of the res-onance parameters found from �tting the BaBaR data[12]. As for the curves corresponding to the parametersfound from �tting SND, CMD-2, and KLOE data, theycoincide, within the errors, with the curve shown andhence are not drawn in Fig. 5. We emphasize that thedata [13{16] are not included to the �ts. Hence, a goodagreement demonstrated in Fig. 5 makes the evidence infavor of the validity of Eq. (4) for the pion form factor.Note that the above treatment does not require thecommonly accepted Blatt{Weisskopf centrifugal factor(1 + R2�k2R)=(1 + R2�k2), where k is the pion momen-tum, in the expression for ����(s) [4]. The fact is thatthe usage of R� dependent centrifugal barrier penetra-tion factor in particle physics (for example, in the caseof the �(770) meson [4]), results in the problem whichis overlooked. Indeed, the meaning of R� is that thisquantity is the characteristic of the potential (or the t-channel exchange in �eld theory) resulting in the phase�bg of the potential scattering in addition to the res-onance phase [22]. For example, in case of the P -wavescattering in the potential U(r) = G�(r�R�), where the

Fig. 5. The pion form factor squared in the space-like re-gion s < 0 evaluated using the resonance parameters ofthe Table, the BaBaR column. The experimental data are:NA7 [13], Bebek et al. [14], Horn et al. [15], Tadevosyanet al. [16]resonance scattering is possible, the background phaseis �bg = �R�k + arctan(R�k). At the usual value ofR� � 1 fm, �bg is not small. However, in the � me-son region, the background phase shift �bg is negligibleand the phase shift �11 is completely determined by theresonance. See Fig. 6, where shown are the phase �11calculated with the parameters from the BaBaR columnof the Table and the data points from Refs. [23, 24] ispresented. Therefore, the descriptions of the hadronicresonance distributions taking into account the parame-ter R� have a dubious character.To conclude, the new expression, Eq. (4), for the pionform factor F�(s) is obtained which gives a good de-scription of the data of SND, CMD-2, KLOE, BaBaR on�+�� production in e+e� annihilation at ps < 1GeV,describes the scattering kinematical domain, and doesnot contradict the data on �� scattering phase �11 . Go-ing to higher energies demands the inclusion of the vec-�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 9 { 10 2012
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Fig. 6. The phase shift �11 of �� scattering. The data are,respectively, Protopopescu et al. [23] and Estabrooks etal. [24]. The curves corresponding to the parameters ob-tained from �tting the SND, CMD-2, and KLOE data arenot shown because they coincide with the curve evaluatedusing the parameters from the �t of the BaBaR data, shownheretor { pseudoscalar and axial-vector { pseudoscalar loops.This work is now at progress.We are grateful to M.N.Achasov for numerous dis-cussions which stimulated the present work. The workis supported in part by Russian Foundation for BasicResearch (Grant RFFI #10-02-00016) and the Interdis-ciplinary project #102 of Siberian Division of RussianAcademy of Sciences.1. J. J. Sakurai. Ann. Phys. (N.Y.) 11, 1 (1960).2. M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953(1961).
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