
Pis'ma v ZhETF, vol. 96, iss. 9, pp. 641 { 645 c 2012 November 10Di�usion of vibrations in disordered systemsY.M.Beltukov1), V. I.Kozub, D.A. Parshin+Io�e Institute of the RAS, 194021 St.-Petersburg, Russia+St.-Petersburg State Polytechnical University, 195251 St.-Petersburg, RussiaSubmitted 11 September 2012We consider di�usion of vibrations in random lattices with translational invariance. Above some frequency!IR, corresponding to the Io�e{Regel crossover (and depending on the strength of disorder), phonons cannotpropagate through the lattice and transfer energy. On the other hand, most of the vibrations in this range arenot localized. We show that these delocalized excitations are similar to di�usons introduced by Allen, Feldmanet al. (see, e.g., Phil. Mag. B 79, 1715 (1999)) to describe heat transport in glasses. In this range the energyin the lattice is transferred by means of di�usion of vibrational excitations. We have calculated the di�usivityof the modes D(!) using both the direct numerical solution of Newton equations and the formula of Edwardsand Thouless. It is nearly a constant above !IR and goes to zero at the localization threshold.Propagation of vibrational excitations in disorderedsystems is one of the advanced problems in condensedmatter physics. In particular, transport mediated bythese excitations is responsible for the thermal con-ductivity of amorphous dielectrics (glasses). However,mechanisms of heat transfer in glasses above the plateauregion are still poorly understood.At low temperatures below 1K the low frequencyplane long wave acoustical phonons are well de�ned ex-citations which transfer the heat in glasses. The ther-mal conductivity {(T ) / T 2 and is controlled by a res-onant scattering of phonons on the two-level systems(TLS) [1, 2]. Between 4 and 20K the thermal conductiv-ity {(T ) saturates and displays a well known plateau [3].As was shown in [4], it can be explained by resonantscattering of phonons by quasilocal vibrations (QLV).The QLV, together with TLS and phonons, are vibra-tional excitations responsible for many universal prop-erties of glasses [5].However, above approximately 20K the thermal con-ductivity rises again and �nally saturates on the level ofone order of magnitude higher at the temperatures aboutseveral hundreds Kelvin [6]. As generally believed, theorigin of this second rise (above the plateau) is not re-lated to phonons. It was established [7], that in thistemperature (frequency) range the mean free path ofphonons l becomes of the order of their wave length � (oreven smaller, of the order of interatomic distance). Cor-respondingly, the Io�e{Regel criterion for phonons [8] isviolated. The existence of crossover frequency !IR inglasses was predicted in [9] within the framework of thesoft potential model and con�rmed by molecular dynam-1)e-mail: ybeltukov@gmail.com

ics calculations for some real and model glasses [10, 11]and for disordered lattices [12, 13].In the regime of such strong scattering a standardconcept of plane waves (phonons) with well de�ned wavevector q becomes inapplicable. If that's the case, whatphysical mechanism is responsible for the heat trans-fer in glasses in this temperature range? The numericalsimulations show that majority of the vibrational modesin this frequency range are not localized [14{16].As was shown in [17, 18], a lower limit of the ther-mal conductivity of amorphous solids above 30K canbe correctly estimated within the framework of the Ein-stein's model [19]. It was assumed that heat transportabove the plateau is a random walk of thermal energy be-tween clusters of neighboring atoms vibrating with ran-dom phases. In fact, a di�usion mechanism for the heattransfer in this temperature range was proposed.At one time, delocalized vibrations in glasses ofa new type, di�erent from phonons, were introduced.They were called di�usons [20{22]. These are vibra-tions spreading through the system not ballistically, asphonons, but by means of di�usion. It is an importantclass of excitations, occupying in glasses the dominantpart of the spectrum. The boundary between phononsand di�usons is determined by the Io�e{Regel crossoverfrequency !IR [22].In vitreous silica this frequency was estimated tobe [10] �IR = 1THz. Integrating density of states [10]up to �IR, we get for the relative number of phononsNph = 0:002 � 0:0005. As a result, in a typical glassonly 0:2% of all vibrational modes are phonons. Allother delocalized modes belong to di�usons. Since di�u-sons are delocalized excitations, they may be responsiblefor thermal conductivity above the plateau.2 �¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 9 { 10 2012 641



642 Y.M.Beltukov, V. I. Kozub, D.A. ParshinTherefore, it is important to study properties ofdi�usons systematically in systems where they exist.They bring a new physics to our understanding of vi-brational properties in strongly disordered systems andenergy/heat transfer in glasses.Recently, using a random matrix approach, we de-veloped a simple scalar model of a 3d disordered har-monic lattice with translational invariance [23, 24]. Itshow presence of two types of excitations, phonons andpresumably di�usons. In the present paper we considerproperties of di�usons. To start with, for the sake ofclarity of further consideration, we outline below themain properties of our model.The vibrational properties of a mechanical systemof N particles are determined by a dynamical matrixMij = �ij=pmimj , where �ij is the force constant ma-trix and mi are the particle masses. The matrices Mand � are real, symmetric, and positive de�nite matri-ces N �N (for simplicity we consider a scalar model).The last condition is important. It ensures mechanicalstability of the system. For a free mechanical system itis necessary to satisfy also translation invariance condi-tions Xi Mij =Xj Mij = 0 (1)(for simplicity we consider all masses mi = 1).We take the dynamical matrix in the form [24]M = AAT + �M0: (2)Here A is a randommatrixN�N built on a simple cubiclattice withN particles. The only non-zero non-diagonalmatrix elements Aij between the nearest neighbors aretaken as independent random numbers from a Gaussiandistribution with zero mean hAiji = 0 and unit variance
A2ij� = 1. The variance controls the degree of disor-der. To ensure the translational invariance, the diagonalelements are calculated as follows, Aii = �Pj 6=i Aji.M0 is a simple crystalline dynamical matrix with unitsprings between the nearest neighbors.If the �rst term AAT in Eq. (2) is responsible for thedisorder in the system, the second term �M0 describesthe ordered part of the Hamiltonian. The parameter �controls the relative amplitude of this part and the rigid-ity of the lattice. It can vary in the interval 0 � � <1.In the paper we have considered the case of strong dis-order where 0 � � � 1 and uctuating part of the dy-namical matrix is bigger than the ordered part. Suchform of matrixM guaranties the mechanical stability ofthe system for any positive value of �.The total density of states (DOS) g(!), calcu-lated numerically by the kernel polynomial method

(KPM) [25] for dynamical matrix (2) for di�erent val-ues of �, is shown in Fig. 1. As follows from the �gure

Fig. 1. The normalized to unity DOS g(!) for dynami-cal matrix M = AAT + �M0 and di�erent � calculatedwith precise numerical KPM solution for cubic lattice withN = 2003 particles (full lines). The straight line corre-sponds to !2 dependence. Inset: dependence !max(�)the DOS, for � = 0 is nonzero at ! ! 0. In spiteof the presence of translational invariance, there are nophonon modes in the lattice with their DOS gph(!) / !2for ! ! 0. It means that phonons cannot propagatethrough the lattice. It is because the rigidity of the lat-tice and sound velocity for � = 0 vanish [24].For � 6= 0 the DOS at low frequencies is proportionalto !2. It corresponds to acoustical phonon excitations.Thus, introducing �nite values of �, we open in the spec-trum a phonon gap. Just above this gap the DOS has asharp maximum at frequency !max which we will iden-tify with the width of the gap. As follows from the inset,the maximum frequency increases as !max / p�.As we have shown [26], inside the gap phononsare well de�ned excitations. Outside the gap they areill de�ned, because the Io�e{Regel crossover frequency!IR � !max. As we will show in this paper, vibrationsoutside the gap are delocalized and belong to di�usons.To determine the localization of the vibrationalmodes, we have calculated the participation ratioP (!) = "N NXi=1 e4i (!)#�1 : (3)Here, ei(!) is i-th particle normalized eigenvector withfrequency !. This participation ratio is shown in Fig. 2for di�erent values of �. We have checked, that all vi-brational modes with exception of small high frequencypart are delocalized. They have P (!) which is indepen-dent of the system size. As we show below, for � = 0 allthese modes can be identi�ed as di�usons.�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 9 { 10 2012
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Fig. 2. Participation ratio for di�erent � as a function of !for N = 273 (one realization). The arrows indicate posi-tions of !max in g(!) for corresponding values of �For � 6= 0, one can clearly distinguish two di�er-ent frequency regions in the function P (!). As followsfrom Fig. 1, the low frequency part (below !max) corre-sponds to phonons. In this range the participation ratioincreases with decreasing frequency. It is related to in-crease of the phonon mean free path l(!) as ! ! 0.In the high frequency part (above !max) P (!) is ap-proximately independent of frequency and coincides withP (!) for � = 0. We will show that this range corre-sponds to di�usons. A similar behavior of the partic-ipation ratio was found recently in 2d Lennard-Jonesglasses [27].Now let us consider the di�usion of energy in thelattice. The �rst approach to calculate the di�usivityof energy D(!) for vibrations with frequency ! is a di-rect numerical solution of Newton's equations. For thatwe have used the Runge{Kutta-4 method with time step�t = 0:01 applied to a cubic sample with size L andN = 106 particles (lattice constant a0 = 1).Assuming zero initial conditions for displacementsand velocities of all the particles, let us apply externalforces with frequency ! and random phases 'i to theparticles in the central layer x = 0fexti (t) = sin(!t+ 'i) exp ��t2=2T 2� ; (4)where !T � 1. The right and the left sides of the sam-ple have coordinates xr;l = �L=2. In such a way weexcite vibrations with frequencies near frequency ! dis-tributed in a small frequency interval (!�1=T; !+1=T ).In calculations we used T = 5 for all frequencies !. Westarted our calculations at time t0 = �5T , when theexternal force is still negligible.After applying the force to the central layer, vibra-tions will spread to the left and to the right ends of the

sample. The average squared distance to the energy dif-fusion front we de�ne as usualR2(t) = 1Etot NXi=1 x2iEi(t): (5)Here, xi is the x coordinate of the i-th particle, Ei(t)is the energy of i-th particle and sum is taken over allparticles in the sample, Etot =Pi Ei(t) is the total en-ergy of the system. It is independent of time after theexternal force fexti (t) becomes negligibly small (i.e., fort > 5T ).The energy Ei(t) we de�ne as a sum of the kineticenergy and a half of the potential energy of connectingbonds (mi = 1)Ei(t) = vi(t)22 � 14Xj Mij�ui(t)� uj(t)�2: (6)Here, vi(t) = _ui(t) is the particle velocity.We will apply this method to the case of � = 0 (i.e.,for the lattice without phonons). The results are shownon Fig. 3. As we can see from the �gure for small and

Fig. 3. The dependence of R2(t) in the case of � = 0 forone sample with N = 100� 100� 100 particles and 14 dif-ferent frequencies ! = 0:5; 1; 1:5; : : : ; 7 (from top to bot-tom). The numbers indicate integer frequencies. The slopeof each line corresponds to each black dot in Fig. 4intermediate frequencies, R2(t) / t. Therefore for thesefrequencies vibrations indeed spread along the x-axis bymeans of di�usion. The slope of the lines decreases with!. For calculating the slope, we take time interval �twhen, on the one hand t > 5T , and on the other hand,R� L=2.From the slope of R2(t) we can calculate the di�u-sivity of modes D(!) using one dimensional formulaR2(t) = 2D(!)t: (7)�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 9 { 10 2012 2�
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Fig. 4. The di�usivity D(!) for � = 0. Black dots are cal-culated by the direct solution of Newton's equations fromEqs. (5), (7) and Fig. 3 for N = 1003 particles (one real-ization). Lines for N = 103; 143; 203 are calculated usingformula of Edwards and Thouless (8) with c = 1 (see be-low). Averaging for lines is performed over frequencies inthe small interval (!��!; !+�!) with �! = 0:25 and overseveral thousand realizationsThis di�usivity is shown by black dots on Fig. 4. Atsmall frequencies it is approximately a constant, thenit decreases with frequency, approaching zero value atthe localization threshold, !loc � 5:5 � 0:5. At higherfrequencies above !loc the dependence R2(t) saturateswith increasing t. This indicates to localization of thevibrational modes.To �nd the di�usivity D(!) for � 6= 0, the method ofnumerical solution of Newton's equations is not appro-priate. In this case we have phonons in the lattice withlong mean free paths. Correspondingly, samples withmuch bigger sizes are necessary to use this approach.Therefore for � 6= 0 we used a second approach. Thedi�usivity D(!i) at eigenfrequency !i was calculatedby means of the formula of Edwards and Thouless [28],D(!i) ' L2�!i. Here, L is a length of the sample and�!i is sensitivity of !i to a twist of boundary conditions.More precisely, we de�ned the di�usivity as follows:D(!) = c lim'!0 L2'2 hj�!(!)ji; (8)where ' is angle of the twisting, and c is some con-stant of the order of unity. It will be determined fromcomparison with the Newton method. The averagingin Eq. (8) is performed over frequencies ! in the smallinterval (! � �!; ! + �!) with �! = 0:25 and/or overseveral thousands realizations.The symmetric real matrix M was de�ned as usual(2) with periodic boundary conditions. The twisting ofthe matrix M by angle ' gives a new Hermitian matrix

M 0 obtained as follows. For bonds between the left (l)and the right (r) boundaries of our cubic sampleM 0lr =Mlr exp(i'); M 0rl =Mrl exp(�i'): (9)For all other bonds M 0jk = Mjk . So �!i is the di�er-ence between i-th eigenfrequencies of matrices M andM 0, �!i = !i�!0i. Twisting of boundary conditions wasperformed for x direction only. For other two directionsthe periodic boundary conditions were used.For � = 0 the results for D(!) are shown on Fig. 4for three di�erent cubic samples (lines). We comparedthese results with numerical solution of Newton equa-tions for � = 0 (black dots) and get for the constantc � 1. Then we used this c value for � 6= 0. The resultsare shown on Fig. 5.

Fig. 5. The di�usivity D(!) for various � (0, 0.01, 0.1, 1)for sample withN = 143 (crosses). The di�usivity was cal-culated using formula of Edwards and Thouless (8) withc = 1. The arrows indicate frequencies !max in the DOSg(!) for corresponding values of �For � 6= 0 we clearly see two di�erent frequencyregions in the function D(!). At low frequencies, be-low !max, di�usivity increases with decreasing of !:D(!) = (1=3)l(!)v, v being the sound velocity. Thisregion corresponds to phonons. After a deep minimumat ! � !max the di�usivityD(!) saturates on a constantlevel coinciding with D(!) for � = 0. Therefore D(!) inthis region corresponds to di�usons. Similar behavior ofD(!) was found in jammed systems [29, 30]. The deepminimum in the di�usivity at ! � !max correspondsto strong scattering of phonons by quasilocal vibrationsnear the sharp peak in the DOS (see Fig. 1).Summarizing, using a random matrix approach wehave presented a theory of vibrational properties instrongly disordered systems. In these systems a relativeamount of phonons is small and nearly all delocalized vi-brations are di�usons. The di�usons play an important�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 9 { 10 2012



Di�usion of vibrations in disordered systems 645role and are responsible for the transport properties ofglasses above the plateau. Therefore we think that it isnecessary to take them into account in interpretation ofexperimental data.We are very grateful to V.L.Gurevich and Anne Tan-guy for many stimulating discussions. One of the authors(DAP) thanks the University Lyon 1 for hospitality.This work was supported by St.-Petersburg Government(diploma project #2.4/16-05/235-C), Dynasty Founda-tion, RF President Grant \Leading Scienti�c Schools"NSh-5442.2012.2 and Russian Ministry of Education andScience (contract #14.740.11.0892).1. S. Hunklinger and A.K. Raychaudhuri, in Progress inLow Temperature Physics (ed. by D. F. Brewer), Else-vier, Amsterdam, 1986, V. IX, p. 267.2. W.A. Phillips, Rep. Prog. Phys. 50, 1657 (1987).3. R. C. Zeller and R.O. Pohl, Phys. Rev. B 4, 2029 (1971).4. U. Buchenau, Yu.M. Galperin, V.L. Gurevich et al.,Phys. Rev. B 46, 2798 (1992).5. D.A. Parshin, Sov. Phys. Solid State 36, 991 (1994).6. D.G. Cahill and R.O. Pohl, Phys. Rev. B 35, 4067(1987).7. J. E. Graebner, B. Golding, and L.C. Allen, Phys. Rev.B 34, 5696 (1986).8. A. F. Io�e and A.R. Regel, Prog. Semicond. 4, 237(1960).9. V. L. Gurevich, D.A. Parshin, J. Pelous, and H.R.Schober, Phys. Rev. B 48, 16318 (1993).10. S. N. Taraskin and S.R. Elliott, Phys. Rev. B 61, 12031(2000).11. H.R. Schober, J. Phys.: Condens. Matter 16, S2659(2004).

12. W. Schirmacher, G. Diezemann, and C. Ganter, Phys.Rev. Lett. 81, 136 (1998).13. S. N. Taraskin and S.R. Elliott, J. Phys.: Condens. Mat-ter 14, 3143 (2002).14. W. Jin, P. Vashishta, R.K. Kalia, and J. P. Rino, Phys.Rev. B 48, 9359 (1993).15. C. Oligschleger, Phys. Rev. B 60, 3182 (1999).16. S. N. Taraskin and S.R. Elliott, Phys. Rev. B 56, 8605(1997).17. D.G. Cahill and R.O. Pohl, Sol. Stat. Comm. 70, 927(1989).18. D.G. Cahill, S.K. Watson, and R.O. Pohl, Phys. Rev.B 46, 6131 (1992).19. A. Einstein, Ann. Phys. 35, 679 (1911).20. P. B. Allen and J. L. Feldman, Phys. Rev. B 48, 12581(1993).21. J. L. Feldman, M.D. Kluge, P. B. Allen, and F. Wooten,Phys. Rev. B 48, 12589 (1993).22. P. B. Allen, J. L. Feldman, J. Fabian, and F. Wooten,Phil. Mag. B 79, 1715 (1999).23. Y.M. Beltukov and D.A. Parshin, Physics of the SolidState 53, 151 (2011) [Fizika Tverdogo Tela 53, 142(2011)].24. Y.M. Beltukov and D.A. Parshin, JETP Lett. 93, 598(2011) [Pis'ma v ZhETF 93, 660 (2011)].25. R.N. Silver and H. R�oder, Phys. Rev. E 56, 4822 (1997).26. To be published.27. A. Tanguy, B. Mantisi, and M. Tsamados, Europhys.Lett. 90, 16004 (2010).28. J. T. Edwards and D. J. Thouless, J. Phys. C. 5, 807(1972).29. N. Xu, V. Vitelli, M. Wyart et al., Phys. Rev. Lett. 102,038001 (2009).30. N. Xu, V. Vitelli, M. Wyart et al., Phys. Rev. E 81,021301 (2010).

�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 9 { 10 2012


