Pis’'ma v ZhETF, vol. 96, iss. 10, pp. 749 - 755 (© 2012 November 25

Whispering gallery like modes along pinned vortices
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We study sound propagation in stationary and locally irrotational vortex flows where the circulation is
wound around a long (rotating) cylinder, using Unruh’s formalism of acoustic space-times. Apart from the
usual scattering solutions, we find anomalous modes which are bound to the vicinity of the cylinder and prop-
agate along its axis — similar to whispering gallery modes. These modes exist for subsonic and supersonic flow
velocities. In the supersonic case (corresponding to an effective ergo-region in the acoustic space-time), they
can even have zero frequency w = 0 and thus the associated quasi-particles with £ = hw = 0 are easy to excite
from an energetic point of view. Hence they should be relevant for the question of stability or instability of

this setup.

Introduction. The full characterisation of sound
modes propagating within a given flow profile is a ma-
jor problem in fluid dynamics and often reveals very
rich physics. Even for stationary flows, which admit
a separation ansatz where the linear perturbations can
be labelled by their conserved frequency w, this prob-
lem is highly non-trivial: For static systems, depending
on what sort of scenario is considered, the dynamics of
perturbations is governed by equations of Schrédinger
i0; = Hip or d’Alembert 87® = D®P type. In such
cases the full characterisation of solutions follows from
the spectral analysis of the differential operators H or
D. For stationary systems, however, the following inher-
ent difficulty appears. The equations assume the form
02®+ A 0;® = B®, where the two operators A and B do
not commute in general, and therefore their spectral con-
tent has no direct significance for the problem at hand.
As a result, questions like the completeness of solutions
or the existence of unstable modes with &(w) < 0 are
far more difficult to address.

The wave equation for sound in a locally irrotational
and stationary background flow has the form mentioned
above, 8?® + A0,® = B®. Precisely the same struc-
ture arises for scalar fields propagating in a stationary
space-time. Moreover, as discovered by Unruh [1], there
is an exact correspondence between the two cases. Let
us consider a fluid with density ¢ and velocity v, whose
pressure p is a function of g only: p = p(p), i.e., the fluid
is barotropic. The perturbations, i.e., sound waves, can
be parametrised by a single potential ® via v = V&
and dp = g@/cg. Neglecting viscosity, they obey the
same wave equation as a scalar field in a curved space-
time described by the effective acoustic metric [1]

ds® = 2 [2dT? — (dR — vdT)?], (1)
Cs
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where T', R are the laboratory coordinates and c; is the
speed of sound: ¢ = dp/dp. This mathematical corre-
spondence allows us make use of standard geometrical
tools and concepts, usually employed in general relativ-
ity, in fluid dynamics.

Vortex flow. In the following, we consider a sta-
tionary and locally irrotational V x v = 0 flow around a
long cylinder, cf. Fig.1. Aligning the coordinate Z-axis

uper%

\
\
\

w
- [T _ acoustic bound state

. .4
Counter-rotating N /S T—

sound ray ! \/

~ Wave function of

AN P
= Stiff wire

Fig. 1. Sketch (not to scale) of the considered setup

with the symmetry axis of the cylinder, we assume the
flow velocity to be v = v(R)e, in cylindrical coordi-
nates Z, R,. The condition V x v = 0 then implies
v = e k/R, where k determines the circulation.

For normal fluids, such a profile approximates the
stationary flow around a rotating cylinder: If the fluid is
incompressible V - v = 0, the above velocity profile pro-
vides an exact solution of the Navier—Stokes equations
(similar to a tornado away from the core). While this
solution gets modified in more realistic models of nor-
mal fluids, for super-fluids (such as *He II), vorticity can
only occur in the form of vortices with a quantized circu-
lation, which is thus topologically stabilised and not so
easy to create (or destroy). The flow profile v =e,k/R
then corresponds to a vortex which is pinned around a
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long cylinder (e.g., wire), where & is an integer multiple
of the circulation quantum ko = h/Mgu. [2].

In fluid dynamics, it is often useful to express the
problem in terms of dimensionless quantities (such as
Rossby number) in order to exploit the scaling symme-
tries. Here, we do the same and choose the sound veloc-
ity at infinity cs (R T 00) = ¢ as reference scale. Using
the circulation k we introduce a length unit £ = k/co
and an angular frequency unit w; = ¢ /k. By rescaling
the laboratory coordinates T' and R, to get dimension-
less t and r, we also find that (1) becomes

ds? =

1
zg [<c2 - 7_—2> dt* + 2dtdp — dr® — r’dy® — d2?|, (2)

where ¢(r) = ¢5(r) /¢ is the dimensionless sound speed
which approaches unity at infinity. Similarly, the nor-
malised density reads p(r) = o(r)/0co. For typical flu-
ids, both of the above functions decrease when approach-
ing the cylinder where the velocity v increases and thus
the pressure p drops. In case of *He II this decrease is
below 20% for typical parameters.

The coordinates t,z, and ¢ have their standard
ranges, but r is restricted to r € (r,, +00), where r,, is
the rescaled wire radius. Note that the acoustic space-
time (2) may possess an ergo-region [3], where goo < 0.
This is the case for small enough radii r < 1/¢, if such r
are in the allowed range, that is, if 7, < 1/¢(ry). From
the laboratory point of view appearance of ergo-region
means that the flow velocity v exceeds the local speed of
sound ¢; in a region. As we shall see, this has profound
consequences for the sound modes.

Geometric acoustics. Sound propagation in the
presence of an irrotational background flow can conve-
niently be described using Unruh’s formalism [1]. Sound
modes in the vortex profile are solutions of the wave
equation of a massless scalar field in the space-time with
the metric (2). However, before investigating the full
wave equation, let us get some insight via the WKB ap-
proximation — which amounts to studying sound rays.
They are null geodesics in the space-time (2), and as we
shall see they are easily found. We search for curves
z°(7) satisfying the geodesic equation & + I'§,&%4° =0
with &° = dz®/dr and & = d?z®/d7?, where the affine
parameter 7 can be chosen arbitrarily. We find that
the problem is reduced to quadratures due to existence
of four independent first integrals. The space-time (2)
admits three symmetries with the Killing vectors 0,
0,, and 0,. Via the Noether theorem, this implies the
conservation of the energy E = Q(ft + ¢), the an-
gular momentum J = Q(r2¢ — ), and the axial mo-
mentum P = Q2. Here, the notation @ = p(r)/c(r)

and f = ¢ — 1/r? is introduced for brevity. To-
gether with the null ray condition #,2* = 0, we can
express all velocities in terms of these first integrals,
eg.,t = (E—J/r?)/(Qc?) and ¢ = (E + fJ)/(2c?r?)
as well as 2 = P/Q. The remaining radial equation reads

0272 + p? =
E* J@+2EJ J? R
=5 -3 5 =B~ Vealr),  (3)

where we have introduced the effective potential Veg (r)
which also contains the term E?(1 — 1/c?).

The sound rays can now be classified by the fol-
lowing arguments. For r 1 oo, the effective potential
Vest(r) vanishes. Hence all scattering solutions must have
E? > P2%. For r | 0, of the other hand, the effective po-
tential Veg(r) diverges Veg(r | 0) | —oo for J # 0. Thus
rays are strongly attracted by the vortex in its vicinity.
There is a cut-off in r, however, provided by r,, (wire
radius), where the sound rays are reflected. If, due to
T4, the potential Veg(r) is monotonically decreasing for
all 7 > 7y, then only scattering solutions (E? > P?)
exist. If, however, there are local minima of Veg(r) at fi-
nite r € [ry,00), bound rays sitting at those minima (or
oscillating around them) will exist. As one may easily
infer from the structure of Eq. (3), this can always be
achieved by tuning the angular momentum J. Choos-
ing, e.g., J = —E, we see that Veg(r) is strictly negative
(assuming ¢ < 1 everywhere; see below), and that there
will exist rays bouncing off r,, indefinitely. Note that
these are counter-rotating rays, i.e., propagating against
the vortex flow.

In the special case of constant ¢ and p (i.e.,, @ = 1),
these qualitative arguments can be made precise. The
maximum of Veg(r) is at r. = /2J/(J + 2E) where

wg(r«) = 0. Let J, E be fixed and r,,, P adjustable. For
Ty > T« we only have scattering rays, otherwise there ex-
ist also bound rays. Generally, for arbitrarily large wire
radii r,, one can find values of J and E for which there
exists no maximum of Veg (ry« is imaginary), and there-
fore bound rays exist. For small J, the radius 7, goes
to zero — i.e., bound states require a minimum angular
momentum. Finally, for large J, the radius r. — /2
which is outside the ergo-region at r = 1.

Surprisingly, in the special case of constant ¢ and p
(i.e., @ = 1) as above, the problem of finding null orbits,
r(y), is exactly soluble in terms of elliptic functions (see
[4]), the reason being not-more-than quartic dependence
of Ven(r) on 1/r, as is also the case in the general rela-
tivistic Kepler problem, for example. We note that the
J? /r*-term is crucial for the universal existence of bound
states of sound as discussed above. As we shall see later,
this remains correct for the full wave equation. However,
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available treatments [5-7] of the subject of propagation
of waves in vortex backgrounds introduce assumptions,
which effectively eliminate this term. While this leads
to the radial equation of simple Bessel form, it also is
the reason why the family of bound states reported upon
here is not to be found in the literature [5-7].

Wave acoustics. In what follows, the full wave
equation will be considered. To this end, let us first dis-
cuss the field expressions for E, J, and P. They can be
obtained from the pseudo energy-momentum tensor [8]

Tab[q)] = (aaq))(abq)) - égab ng (acq))(adq))a (4)

where ® is the velocity potential v = V& of the sound
waves 0v and g,p is the acoustic metric (2). For each
Killing vector field &, we get a conserved field quantity
E = [dS®T,, &*. This means, in particular, that Z is
independent of the (laboratory) time ¢. As usual, in-
variance under time-translations leads to the conserved
energy,

E[®] = /d% o (<i>2 + RV - %[3@]2) )

where Minkowski scalar product is implied in the term
(V@)% ie., [V®]? = (6,8)? + (8.®)* + (0,®)?/r?. The
energy functional is positive definite as long as ¢ > v?2
everywhere, i.e., ¢ > 1/r2. This is not anymore the
case if the space-time contains an ergo-region. The
two remaining conserved functionals following from the
Killing vector fields 8, and 0, are the axial momentum

1
P®] = /d3r 2 (m + T—23V,<1>> 0,8,  (6)

and similarly the angular momentum J[®] after replac-
ing 0. — 0,®. Another useful concept can be in-
troduced if we admit complex solutions (potentials) ®.
True velocity potentials are always real, of course, and
can be derived from the complex ® as usual via the real
(or imaginary) part. Due to the U(1) gauge-invariance
of the wave equation for such complex potentials, the
Klein—-Fock—Gordon inner product of two solutions

3 1
(‘I>1|‘I>2) = 5 /d3T q)I (Bt + T—28¢> q)z, (7)

with @{E)Qz = $70,P2 — P20, ®7 is conserved, i.e., in-
dependent of the Cauchy surface over which it is taken
(in particular: independent of ¢).

Separation ansatz. In view of the symmetries, we
consider the following separation ansatz

®(t, 7, 0,2) = ¢(r) exp{—iwt + imp + ip,z}.  (8)
Iucema B ARIT® Tom 96
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For such solutions ®, the conserved quantities are re-
lated to the inner product via E[®] = w(®|®), P[®] =
= p.(®|®), and J[®] = m(®|®). Since (®|®) and E[P]
are always real, solutions with complex frequencies — if
they exist — would need to have (2|®) = 0 and E[®] = 0.
In the absence of an ergoregion, E[®] is positive definite
and thus all frequencies are real, i.e., the flow is lin-
early stable [9]. Furthermore, the pseudo-norm (®|®)
of our modes (not guaranteed to be positive) and their
frequency w have the same sign in this case. As a re-
sult, creation and annihilation operators are associated
to modes with positive and negative frequencies, respec-
tively. In the case with an ergo-region, the energy can
become negative and hence this property is no longer
true. This can lead to interesting and related phenom-
ena such as super-radiance [10] and the Klein paradox
[11]. Since a given frequency w > 0 can be associated to
both, creation and annihilation operators, one can have
a mixing of the two and thus phenomena like particle
creation.

By inserting the above separation ansatz (8) into the
wave equation we reduce it to a single ordinary differen-
tial equation (in radial direction):

_iir i+w2 1_l +
rp dr Par c?

=Hp= (0 —p2) p = Ab. (9)

This main equation of our sound-propagation problem
has several interesting features [4]. First of all, because
p — land ¢ = 1 at 7 T oo, the solutions ¢(r) at large
r are either oscillating, for w? > p2, or exponentially
decaying, for w? < p?. In complete analogy to the ray
problem, we call the first type of solutions the scattering
modes, and the second the bound-state modes. Finding
these modes is then reduced to an eigenvalue problem
Hp = Ap with H = D + V, where D stands for the “ki-
netic part” involving r-derivatives and V is the effective
potential. Note that Veg(r) in the sound-ray problem
corresponds to V on identification of E and J with w
and m, respectively. For the scalar product

{d1]¢2} = / rdr p(r) 8 (r)a (r), (10)

the operator # is self-adjoint if the Neumann boundary
condition at 7, is assumed ¢'(r,) = 0, which would
just reflect the fact that perturbations can not penetrate
the wire. Even though neither is H the Hamiltonian
of the problem, nor is the scalar product (10) distin-
guished by the geometry, both of these elements suffice
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for the following general statements. First of all, H has
bound states, A < 0, only if one can find test func-
tions ¢ such that {y|#|} < 0. The kinetic part, D,
is always non-negative, and therefore bound states can
only exist if V is sufficiently negative. A lower bound
on the eigenvalue A can be obtained via the minimum of
V(7). Then, for general profiles of ¢(r) and p(r) with the
aforementioned asymptotics, we can prove the following
statements, which are the main result of this paper:

I. Bound states with w = 0 can only exist if the
fluid velocity (as seen by laboratory observers) exceeds
the local speed of sound somewhere ¢(r) < 1/r, i.e., if
the acoustic space-time has an ergo-region. Otherwise
V(w = 0) and thus also H are non-negative (no bound
states).

II. Bound states with m = 0 can only exist if ¢; be-
comes sufficiently smaller than c,, near the wire. The
mechanism for bound states in this case is just the total
reflection from the region with larger speed of sound —
which can also occur in a non-rotating fluid.

II1. Independently of the mechanism of II, caused by
the w? term in V), the other terms in V can only allow
for bound states with mw > 0 (i.e., co-rotating) if the
fluid flow is locally supersonic, as in I.

IV. For any radius of the central wire, r,,, there are
always bound states for some (possibly large) values of
angular quantum number m and frequency w.

We begin justification of the statements by argu-
ing that quite generally the velocity of sound drops
towards the axis of rotation: the Bernoulli theorem
(v2/2 + h(g) = const for a free stationary flow) im-
plies that the specific enthalpy h(g) drops towards the
axis, because v increases. Thus the pressure p and
the density ¢ must decrease near the wire. For a large
family of fluids the Griineisen parameter, o« dc,/dp, is
positive (e.g., for *He II at T = 0, we have dc,/do €
€ [2.2,2.9] x ¢s/0 [12]), and therefore the speed of sound
is also a monotonically decreasing function of r. Thus
the term w?(1 — 1/¢?) in V is negative. For sufficiently
large w, one could get bound states for m = 0 via total
reflection, see point II. However, if the variation of ¢(r)
is small the frequencies required for bound states might
be too large for the underlying fluid dynamic description
to be valid.

In contrast, the bound states for m # 0 mentioned
in point IV can occur for smaller values of w, for which
fluid dynamics is valid, and might even dominate the
macroscopic behaviour of the fluid (as in the instability
of the Taylor—Couette flow [13]). Let us prove the ex-
istence of states of type IV. To this end, we exploit the
freedom of varying parameters in the operator H, while
keeping a single test function v (r) fixed. In the poten-

tial ¥V we are free to adjust m and w. The kinetic part
of the expectation value of H is positive, {|D|¢} > 0,
and independent of m and w. On the other hand, for
counter-rotating modes, mw < 0, the expectation value
of V can be made arbitrarily negative: Taking, e.g.,
w = —m, we see that {¢)|V|¢} scales as m? and is neg-
ative {¢|V|¥} < 0 for any ¢ # 0. Thus, if m? is large
enough, we get {¢|H|y} < 0, i.e., bound states must
exist.

Case of constant p and c. The arguments stated
above prove the existence of the bound states for large
enough m, but they do not provide information about
how large m must be for a given setup and how w de-
pends on p,, for example. To get this information, we
numerically solve Eq. (9) for the special case of constant
p and c. Since the family of bound states depends on
four parameters, (r,,w,p,, m), it is necessary to inves-
tigate selected sections of this four-dimensional space.
We first present examples illustrating general statements
shown above, and subsequently give a more systematic
discussion of the physically most-relevant case where the
superfluid flow is neither supersonic, nor exceeding the
Landau critical velocity anywhere.

Illustrative examples. In Fig.2, we have plotted an
example for the dispersion relations w(p,) of the bound
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Fig.2. Typical dispersion relations for counter-rotating
bound states; here for the case without ergo-region r,, =
= 1.01 and m = —6. The frequency gap wmin =~ 1.3 is a
generic feature for subsonic flows (no ergo-region)

states in case of a setup just avoiding supersonic flow, i.e.
barely avoiding having an ergo-region, with r,, = 1.01.
(For such a value of r,, general features of dispersion
relations are well discernible.) In agreement with state-
ments II and III, we find that only counter-rotating
bound states exist, for all values of m < 0 (without
loss of generality we consider w > 0). In agreement with
statement I, there is a gap for all modes, i.e., a minimum
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Whispering gallery like modes along pinned vortices 753

frequency, of wyi, ~ 1.3 below which no bound states
exist. (Note, that the value of wmin depends on m and
T, but its existence is generic.) Above this gap, the dis-
persion relation quickly becomes approximately linear,
which means that these modes propagate with the group
velocity almost equal ¢ along the vortex. For compari-
son, we plotted an example with an ergo-region r,, = 0.3
in Fig.3 where the overall change of character of the

30
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0
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10 15 20 25 30 0 5
p

10 15 20 25 30

Fig.3. Typical dispersion relations of bound states for
a setup including supersonic flow (with an ergo-region);
here for r, = 0.3, left plot: counter-rotating modes with
m = —5, right plot: co-rotating modes with m =5

spectrum of sound modes is evident. Consistent with
point ITI, families of co-rotating modes m > 0 do exist
in this case. Furthermore, there are co- and counter-
rotating bound states which reach w = 0, cf. point I.
Note that the combined ¢ — —t and ¢ — —¢ symmetry
of our set-up implies existence of states with (—w, —m)
when states with (w,m) exist, and therefore states with
w = 0 are degenerate, and correspond to both signs of
the angular wavenumber m. Let us also remark that
in all cases the region with |w| > |p.| is filled with a
continuum of scattering states, which are well known.
Quantitative properties of the scattering states lead to
the precise understanding of the fundamental phenom-
enon of the Iordanskii force [6, 14, 15] (force acting on
a vortex moving against a uniform superflow).

The apparent softening of the spectrum of sound
modes in the presence of supersonic flows (ergo-regions),
as well as the richness of the family of sound modes
is remarkable. This brings about the question of ob-
servability of the bound-state modes, and in turn the
question of stability of superfluid setups necessary for
their existence. The problem of stability can, again, be
addressed on different levels of sophistication, includ-
ing ones respecting the structure of excitations of the
superfluid (true quantum many-body excitations, Lan-
dau criterion). Within the universality class of fluid
dynamics we have shown in [4] that in the absence of
ergo-regions the system is at most marginally unstable.
9 IIucema B ARIITD
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In the presence of ergo-regions, however, we conjecture,
that the situation is the same (no complex frequencies).
This is supported by results of semi-numerical studies in
[4]. The dynamics of the (possible) marginal instability
needs to be considered on the model-dependent basis;
for the superfluid *He we refer the reader to the exten-
sive discussion in parts VI and VII of [15]. Suffice us to
note, that should the superflow velocity be everywhere
lower than the Landau critical velocity, current state of
understanding of the microscopic theory does not foresee
any mechanism for instability.

Background flow below Landau velocity. We present
here a discussion of the bound states in setups in which
the superflow velocity never exceeds Landau’s velocity
vr. As vy, is typically lower than the speed of sound, c,
by a factor of &~ 4 (for Helium), a setup with (dimen-
sionless) 7, > 4 will not exhibit superflows with v > vy,
(recall that 7, = 1 would correspond to a radius where
v = ¢). As we shall show, the most serious challenge re-
lated to the experimental detection of the bound states
comes from their relatively high frequencies. Below we
attempt to find conditions where the experimental re-
quirements are the least challenging.

The most efficient way for searching through the 4-
dimensional parameter space (7y,w,p,,m) for bound
states with lowest w (in the absence of supersonic flow)
is provided by scaling transformations [4]. These stem
from the fact that the radial equation for constant (p, c)
can be written in terms of three variables, (z, K, M),
only:

z? = |k/m|r?,

K2:|mk|’ M2:m(m+2w)a

(11)

where k = \/p? — w?, and the radial equation assumes
the very elegant form

d’¢ 1d¢ N M2
dz? zdz z2

¢+ K? [1—$]¢:0, (12)

with a Neumann boundary condition %hw = 0. (This
equation is equivalent to the modified Mathieu equa-
tion.) Positions of bound states in the space (z,,, K, M)
can be interpreted as correspodning to problems with
essentially any r,,, but the with remaining parameters
(w,p,,m) dependent upon the choice (of 7). For the
task at hand we choose r,, = 4, and attempt to mini-
mize w over all allowed bound states. Without restrict-

ing generality we set m > 0 and find

rowl 1/ M?
m= w==-|——-m 13
T Z(m >’ (13)
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so that for every position of the bound state in the
(zw, K, M) space (to be determined), the m and sub-
sequently w can be computed.

Numerical investigation shows that lowest w’s result
from the region of small (z,, K, M) (each of these pa-
rameters < 0.5). In this region, for fixed M, z,, of a
bound state depends almost linearly on K and there-
fore the computed m and w depend only on the slope of
the line, see Fig.4. The problem of finding the lowest-

0.40
X0
0.35
0.30
0.25
0.20
0.15
0.10

0.05

Fig. 4. Positions of bound states (dark lines) in (K, )
plane for M = 0.2. Linear relation for z,,(K) is evident

frequency bound state is thus well-posed; an interesting
solution (not optimal) is found in the M = 0.2 cut, with
Zyp = 0.15 and K = 0.129 leading to m = 3.44. As
m must be an integer, we take m = 4 corresponding to
the choice of 7, = 4.65 > 4 (background velocity below
the Landau velocity by a margin of 15%). This gives
w & —2 (by symmetry there exists a bound state with
m = —4 and w = 2), and the “radial wavenumber” is
k =4-1073 (i.e. the radial extension of the perturbation
is about 10? times larger than the wire-radius).

We have therefore found a bound state with
(rw,w,pz,m) = (4.65,2,2,—4). All these values are
given in dimensionless units; corresponding physical
values depend on the units of length/angular frequency
used, which in turn depend on the circulation s of the
background flow. If a number N of circulation quanta
Ko is wound on the wire, than the corresponding units
scale according to

wny = w; /N,
Ly =£1-N. (14)

(Recall: £1 = Ko/coo, w1 = ¢*/Kko.) The challenge as-
sociated with large frequencies in case of N = 1 is the
following: the dimensionless frequency w would need to
be multiplied with the unit w; = 3.6-10'2s7!, which ex-
ceeds the roton frequency in *He, wyo; = 1.15- 102571,

Scaling with N allows for lowering of this frequency; al-
ready for N = 13 the physical frequency of the bound
state is less than a half of the roton frequency. The
linearity of the (bulk) dispersion relation of helium II
for such frequencies, and the required wire radius of
(ry = 3nm), make reliability of the hydrodynamic de-
scription plausible, and in turn validate our considera-
tions.

Conclusions. For a pinned vortex where the flow
is wound around a cylinder (Fig.1), we studied sound
propagation via Unruh’s formalism of acoustic space-
times. The formalism has proved to be especially useful
in this case, as the crux of the problem is quickly reached
and can be studied in depth using well-established meth-
ods of classical field theory in curved space-times. On
general grounds, we predict the existence of bound states
of sound — whispering gallery like modes — based on
the geometric acoustics approximation as well as the full
wave equation. Assuming the fluid dynamical descrip-
tion to be valid, these bound states should exist for arbi-
trary non-zero circulations  (even in the slowly-rotating
regime), but their effects are most relevant for relatively
compact wires with strong circulation.

As an example of an (in principle observable) bound
state we have considered a setup with 13 circulation
quanta wound on a wire of radius 3nm (as in Fig.1). In
this setup the lowest angular frequency of the (m = —4,
counter-rotating) bound state is w = 5.5-10 s~!, and is
lower than half of the roton frequency. The background
superflow velocity is everywhere below the Landau crit-
ical velocity of 60m/s (stemming from the roton dip),
and the setup does not allow for acoustic ergo-region.
We see no reason for expecting standard instability paths
to set in this case. Existence of bound states of sound,
which are localized on distances of the order of ym from
the wire, should lead to enhanced transmission of sound
(with frequencies above the gap wmin) along the wire.
In this way the vortex acts as a micro-waveguide, with
several branches of the dispersion relation w(p,, m) as in
Fig. 2, which are computable (numerically) for a given
wire radius r,, and circulation k.

One may also consider alternatives to “He II. Apart
from normal fluids mentioned before, Bose—Einstein
condensates can exhibit a giant vortex [16] on the axis
of rotation, where a central external repulsive potential
plays the role of the wire. Such systems offer additional
degree(s) of experimental access, but do require a sep-
arate derivation of the dispersion relations, for example
regarding the form of the boundary condition at r = r,,.
Based on our experience with different boundary con-
ditions [4], we expect that bound states do also exist in
such systems. The reported softening of dispersion rela-
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tions for supersonic flows, and its traces in more realistic
models of rotating super-fluids, require further investi-
gation.

Let us finally remark that the family of bound
states presented here is distinct from the phenomenon of
Kelvin waves, known from normal and super-fluid dy-
namics. The position of the vortex considered in this
paper is fixed, unable to move or be deformed — which
is the important characteristic associated with Kelvin
Accordingly, the dispersion relation (e.g., in
Fig.2) of the modes considered here is much stiffer and
more sound-like than that of the soft Kelvin waves with
the dispersion w(p,) ~ kp?log(p.)/2 for small p,, see
[2].
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