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Numerical calculations of bound state energies of a delocalised fermion and
magnons in strong magnetic field are presented. An analysie has been done in
the framework of an extended Hubbard model, atrictly speaking, a Kondo-like
model. Orne of the characteristic feature of such 2 model is an ’anti’-Nagaoka
behaviour unusual for strongly correlated fermion systems. In the case of a weak
doping, when the free fermion interaction can be neglected, the dependence »f
magnetization on magnetic field should exhibit a step-like behavior. Steps are
mostly of the same amplitude, which is proportional to the concentration of elec-
trone (holes). The critical values of the magnetic field are accompaned with giant
absorption (irradiation) of magnons. Most likely, the effect discussed below is
better to look for in 3d-compounds with a moderate value of antiferromagnetic
exchange constant J.

Recently the experimental discovery of high-T. superconductivity (SC) in-
voked a great interest in different versions of a Hubbard model. The crucial
prerequisite of high-T. SC are CuOj3 layers exhibiting antiferromagnetic (AFM)
order in Cu sublattice when the doping of holes into the oxygen band is negli-
gible. In this work we discuss properties of strongly correlated fermion systems
described by the so-called extended Hubbard model first introduced by Emery
1 In sufficiently strong magnetic field, near the saturation limit, a doped hole 1)
appears to be in a bound state with a few spin excitations, i.e., magnons on the
FM background. This situation is common for several models like t—¢' — J model,
Kondo-like model, etc. The considered properties are not associated with the sub-
ject of SC. Most likely, the effecte discussed below cannot be observed in high-T,
SC because of the enormously large value of the exchange field (J > 0.1eV).

One of the curious property of the conventional Hubbard model with an in-
finitely strong on-site repulsion (U; — oo) is the Nagaoka phenomenon ?: a single
hole on a hali-filled d-band background (fig = 1) arranges all the spins ferromag-
netically. The energy gain comes from the kinetic energy term favouring the FM
background. For large but finite Uy, a competition of the weak AFM interaction
and the mentioned above tendency of a hole to create the FM background results
in emergence a magnetic polaron. It occupies a finite area, moving after the

YOur terminology originates from copper oxides, but we keep in mind a more general
situation
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hole with spins inside it being arranged ferromagnetically. A conventional AFM
background is formed by domains beyond this area.

Such bound states are not typical of the Emery model given by the Hamilto-
nian:

H = _tpd Z (Pdeﬂ + Rapﬂ,) + Z(Edﬂk + UdﬂRTﬂRl"f"
<R;> 0 R

> _(epnf + Upnfynl)). (1)
7
Here pt, d;:, (Pro»dg,) are hole (spin projection o) creation (annihilation) oper-
ators on the sites of p- and d-sublattice, denoted by 7 and R, respectively. We
suppose that these sublattices are inserted one into another like in the case of
CuO; layers. The single hole on-site energies ¢p, €4 and the on-site Coulomb
repulsions Uy, Uy together with the kinetic energy term (p — d hybridization)
define one of the simplest version of the Emery model which seriously considers
both p and d, states, takes directly into account hybridization of p and d orbitals,
and, certainly, the on-site correlations are also included into it. However, these
advantages are not compensated by its complexity.
If the inequalities

eE=€p—64>ty and Ug>e
hold, then the low-energy states in the extended Hubbard model are associated
with d-sites which are singly-occupied:
nh =Tk, = 1.
A perturbation theory is usually applied to transform Hamiltonian (1). The
contribution of the second order perturbation theory is the Kondo-like interaction
H, of a p-hole with its neighbouring d-holes:

Hp=(nt1s) Y, XF, ZeTXE +(rz+rs)ZZ;i o
E;a!¢02

al Oa
s 2 X XFia (2)
R.Gl#ﬂa

where the Hubbard notation is used: operator X°°(X%) creates (annihilates) a
hole at p-site with the spin projection o, whereas Z*# alters the spin projection
B — aof a hole. Lattice vectors @; connect the nearest sites of d and p sublattices.
The energy parameters 7; are defined as follows:

t2 t2 t2

pd pd pd

T = — _—-— = ——————— 3

The terms entering Hamiltonian (2) are interpreted as a direct p-p hopping term
(3rd term), Kondo-like hoppiug term (1st term) and an AFM p-d exchange (2nd
term). The contribution of the fourth order perturbation thecry is the AFM
exchange inieraction Hy between d-holes:

Hi=J Y 225 (4)
<R,R'>
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where J may be related to the parameters of the initial model {1):

t, 4 2
gt 4 2 5
e? (2€+U,+U¢) ( )
The operator entering Eq.(4) can be rewritten in the conventional form of a spin
dot product (S = }):

BrpBa _ o3 & 1
25 Zg =285555 + 3

Glazman and Ioselevich 3 have analysed a ferromagnetic state instability in
a special case Uy — oo, U, = 0 of the Kondo-like model (2). A single p-hole
is supposed to move in a well-defined hypothetical FM background of d-holes
and be able to be bound to spin excitations (magnons) on this background. In
the work 3 a variational approach has been used to calculate the energy spec-
trum of quasiparticles consisting of a hole and several magnons. The conclusion
about a tendency of the bottom of a quasiparticle energy band to low with an
increase of the number of magnons looks truthful. Later the exact solutions for
a composite system ’hole + magnon’ in a class of Kondo-like models *5 have
given a good reason to believe, that p-hole tends to arrange d-spins surrounding
it paramagnetically.
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Fig. 1. Magnetisation vs magnetic field (shown schematically). Transformation
of a step-like behavior to a continuous one is explained in the text. In inset: a)

e;‘") vs n (shown schematically); b) e v n (tangent slope= 2uph); c) ¢ vs
n; cf‘o) and &) are taken arbitrarily. Any exchange interaction between d-spins
is ignored.
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The excitation spectra of a single p-hole depend on the total spin S of the
system. It is suitable to introduce the quantum number n, i.e., the number of
magnons as compared to the saturated magnetization case: n = Spsy — S. The
bottom of the upper band corresponding to n = 0 is situated at the Brillouin
cell corners. Lying below is the energy band characterized by n = 1. Its bottom
is placed at the Brillouin cell centre. Such an alteration repeats itself with an
increasing number of magnons and is accompanied by monotonical lowering the
energy of a composite state of p-hole and magnons. Below we denote this energy
by es‘"). Most likely, that es."), decreasing monotonically with n, goes asymptoti-
cally (in the thermodynamical limit n — oo) to the energy level of a true ground
state arranged by a single hole. The interaction of magnons with the external
magnetic field h contributes the following n-dependent term: es::) = 2uphn. A
competition of es‘") and es,':) results in a hole energy el = e}:') + es.':), which
selects a finite optimal n. It is noteworthy that all the quantities FON ef:') and
es,': ) are defined on the manifold of integer n’s. The situation above is summarized
qualitatively in Fig.1(inset).

If a linear size of a hole-magnon polaron is smaller than a hole spacing, then
a polaron gas is beleived to be weakly interacting. The interaction of composite
holes owing to the exchange by magnons is strongly suppressed in the case of
hole localization by substitutional impurities like Sr in Las_;Sr,CuO4 at small
Sr concentration.

Reconstruction of a hole polaron structure happens when the external field
achieves one of its critical values h., accompanied by a change of the magnon
number n by unity in each hole polaron. Thence, the magnetization vs magnetic
field curve should exhibit a set of discontinuities. Their amplitudes are the same
at any h., and proportional to the hole concentration. So, a magnetization curve
could be used to measure the concentration of holes under the doping. A step-like
behavior of magnetization is shown in Fig.1. Certainly, thermal fluctuations and
polaron interaction make the curve in Fig.l1 smoother. Hence, in a sufficiently
small magnetic field, when the linear size of a hole-magnon polaron becomes of the
same order or larger than the hole spacing, a step-like behavior of magnetization
vs magnetic field changes by smooth one.

Although the dynamics of absorption (irradiation) of a magnon by a polaron is
beyond our interests here we could predict an appearance of giant ferromagnetic
waves, probably incoherent.

So far we ignored the AFM Heisenberg interaction (4). It changes a magnetic
behaviour but not crucially. First, a FM background is assumed to be stabilized
by the finite external field. For a square lattice the field hr favouring the FM
arrangement of d-spins % is given by hg = 4J/up. At the field h above hy any
free magnon has the following excitation spectrum: E(§) = A+4J(1+ }(cosg:+
cos ¢,)), where § belongs to the Brillouin cell of d sublattice and A = 2up(h—hr)
coincides with a tangent slope of the curve b (Fig.1,inset).

Second, there are changes in the curve a (Fig.1,inset) which appears to be well-
defined for integer n’s limited from above by n,,. It happens because localization
of a free FM magnon within a polaron leads to the loss of the exchange energy

proportional to J. So, if the difference eﬁ"H) - ei") becomes of the order of
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the magnon bandwidth, then any new magnon after the nic magnon cannot
be captured by a hole and goes to the bulk. Formaliy, the changes ir Fig.1
are completed if the function ef‘") is supposed to be equai w0 egf" ) in the 'non-
physical’ region (n > nyp). A step-like behavior of the magnetization curve may
be observed above hp. Consisting of n,, steps it is smooth below hyz.
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Fig. 2. Energy spectrum of *hole+1 magnon® bound state (n=1,13 =057 =
0.5). The continuum of unbound states lies above the band of bound states
(a, J = 0.25). Strong exchage interaction (b, J = 2) favours in hole-magnon
decoupling. The magnon energy is computed as compared to the FM background.
The contribution of Zeemann energy is omitted.

The role of the exchange interaction in restricting the number of magnons
captured by a hole is illustrated by the results of numerical calculations. They
have been performed for the case of alternative p-d chains described by the Hamil-
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tonian Hy, + Hj. The region of stability of ’hole+1 magnon’ bound state can be
determined analytically. )

Fig.2b displays the energy gain due to a hole-magnon decoupling. It happens
at sufficiently large J.The two-magnon case has been investigated by means of a
simple version of the Lanczos method (for its application to strongly correlated
systems see 8 ). It is noteworthy that even at the small value of the exchange
constant (J = 0.25) the loss of energy in the course of decoupling according to
the scheme *hole+2 magnons’ — ’hole+1 magnon’ + 'free magnon’ is very small
(cf.Fig.3).
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Fig. 3. 'Hole+2 maguons’ (r, = 1,7, = 0.5, 73 = 0.5,J = 0.25). Unbound states
correspond to one free magnon at leae:

Below we resume the results of this work.

1. Two-band systems, like those, described by the Emery model, behave
unusually, if the external field is strong. Magnetization vs magnetic field curve
should display a set of steps of the same amplitude, which is proportional to the
hole concentration.

2. Steps at the magnetization curve disappear at sufficiently small values
of a magnetic field. It happens either when the external field is less than the
exchange field hr or when the linear size of a ’hole+magnons’ polaron exceeds
the hole spacing.

P For this purpose the equations derived in the Appendix A of * can be used with small
modification coming from a magnon hopping term.
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3. The exchange interaction favours the escaping of magunons from composite
quasiparticles, so, the number of captured magnons in a polaron is restricted

from above.
I am indebted to P.B.Wiegmann and D.I.Khomskii for fruitful discussions.
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