Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-120
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 96 (2012) | ISSUE 11 | PAGE 799
Efficient step-mediated intercalation of silver atoms deposited on the Bi2Se3 surface
Abstract
The intercalation of silver atoms into the van der Waals gap of the prototypical three-dimensional topological insulator Bi2Se3 is studied by means of ab initio total-energy calculations. Two possible intercalation mechanisms are examined: penetration from the terrace under the step and penetration via interstitials and/or vacancies of the surface quintuple layer block. It is shown that the former mechanism is strongly preferred over the latter one due to significant energy gain appearing at the step. According to performed estimations, the room temperature diffusion length of silver atoms reaches ten microns within a couple of minutes both on the surface and within the van der Waals gap, which essentially exceeds a typical distance between steps. These results shed light on the mechanism of intercalation of metal atoms deposited on the Bi2Se3 surface.