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Hypothetical topologically nontrivial superconducting state of two-dimensional electron system is discussed
in connection with the problem of high-temperature superconductivity of cuprates. Direct numerical solution
of the self-consistency equation exhibits two nearly degenerate order parameters which can be formally referred

to dmzfy

2 and d,, orbital symmetry. Spontaneous breaking of the time-reversal symmetry can mix these states

and form fully gapped chiral d + id superconducting state.

In recent years, condensed matter physics has sig-
nificantly focused on studies of peculiar states of mat-
ter, such as two-dimensional (2D) topological insulators
and superconductors [1]. Both time-reversal (TR) in-
variant and TR breaking topological superconductors
have attracted a lot of interest, in particular, because of
their potential applications. TR breaking superconduc-
tors are classified by an integer topological invariants [2]
similar to those used for classification of quantum Hall
states [3]. The simplest chiral topological triplet super-
conductor with p, + ip, orbital symmetry was consid-
ered by Read and Green [4] and predicted to exist in
SroRuO4 by Mackenzie and Maeno [5].

Degeneration of the d._,. and d,, ordered states
inherent in doped graphene monolayer has recently con-
sidered by Nandkishore et al. [6] as possible origin of a
rise of a singlet chiral superconducting (SC) state with
d + id orbital symmetry. Such complex order parameter
was suggested by Laughlin [7] to connect the TR broken
symmetry and the low-temperature phase transition ob-
served in Bi,SroCaCuyOsg in external magnetic field [8].
In such a case, the d,, component of the SC order para-
meter turns out to be field-induced. Similar phase tran-
sition was observed in Ni-doped BizSr;CaCus2Og in zero
external magnetic field [9]. Balatsky [10] pointed out
that, in the presence of magnetic impurities, the d_, _ y2
superconductor can exhibit a transition exactly into the
d + id state due to a coupling between impurity magne-
tization and the d,, component of the order parameter.

In this communication, we report a possibility of
a rise of d + id chiral state in high-temperature SC
cuprates.

Recently introduced concept of SC pairing with large
pair momentum under screened Coulomb repulsion [11]
offers an explanation of principal features of cuprate
superconductors: 1) a checkerboard real-space order-
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ing observable in the SC state [12] can be directly re-
lated to the pair momentum, comparable with recipro-
cal lattice spacing [13]; 2) pseudogap (PG) state [14]
with a broad region of SC fluctuations above the tran-
sition temperature 7, can be explained by a rise of
quasi-stationary states of pairs with large momentum
due to real-space oscillations of the screened Coulomb
potential [15]; 3) high-energy effects observable in opti-
cal experiments [16] can be related to the electron-hole
asymmetry that becomes apparent in the SC state of the
cuprates.

The order parameter originating from SC pairing
with large momentum is nonvanishing in the interior of
a part of the Brillouin zone (domain of kinematic con-
straint) due to the fact that, at T = 0, the momenta of
both particles composing a pair should be either inside
or outside the Fermi contour (FC). This order parame-
ter turns out to be appreciably nonzero inside vicinities
of nested segments of the FC [15]. In the case of SC
cuprates, such segments correspond to antinodal region
of the Brillouin zone [12].

High values of T, and specific isotope effect man-
ifested in the cuprates [17] show that, together with
the repulsive Coulomb pairing interaction, one should
take into account the attractive contribution owing to
electron-phonon interaction (EPI), including the for-
ward scattering effect [18].

In the antinodal region, phonon assisted Coulomb
pairing with large momentum can predominate over con-
ventional phonon-induced pairing with zero momentum
that prevails only in the nodal region. Then, supercon-
ductivity at low temperatures should exist as a biordered
state formed by the condensates of pairs with large and
zero momenta in the antinodal and nodal regions of the
momentum space, respectively [15]. On the contrary,
the SC order just below T, should be determined by the
pairing with large momentum. Therefore, such an order
should arise only in the antinodal region.



810 V.I. Belyavsky, V. V. Kapaev, Yu. V. Kopaev

Considerable enhancement of T, observable in the
cuprates, can be qualitatively related to specific phonon
induced “symmetrization” of real-space oscillations of
the screened Coulomb potential [19]. The SC order pa-
rameter A(k; K), where k and K are relative motion and
center-of-mass momenta of SC pair, respectively, should
be obtained as a self-consistent solution to the mean-
field gap equation with the momentum representation
of such a symmetrized potential U(k,k’; K). The gap
equation at T' = 0 can be written as

I. I.
A(k;K):—% Uk, k';K) A(k"; K) .
@ /(K5 K) + A2 (K5 K)

(1)

Here, 2¢, (k;K) = e(k,) + e(k_) is kinetic energy of
a singlet pair composed of the particles with momenta
k, = K/2x+k, the summation is taken over momenta k'
belonging to the domain of kinematic constraint relevant
to given pair momentum K.

In the case of pairing with K # 0, in common
with the well-known Fulde-Ferrel-Larkin—Ovchinnikov
(FFLO) problem [20, 21], the order parameter can be
represented in the form of either a running wave [20],
A ~ expiKR, or a standing wave [21], A ~ cos (KR),
that is as a symmetric superposition of running waves
with pair momenta +K. Here, R is center-of-mass
radius-vector of the pair. It should be noted that, unlike
the FFLO state, the SC state with nonzero center-of-
mass momentum considered here arises without exter-
nal magnetic field and, generally speaking, preserves TR,
symimetry.

One can expect that, along with the symmetric su-
perposition, antisymmetric superposition of the same
waves, A ~ sin (KR), could be a solution to the gap
equation as well. Both symmetric and antisymmetric
solutions are defined in common domain of kinematic
constraint which has to be constructed as the union of
the domains for running waves with +K.

Because of the crystal symmetry of the system,
FFLO order parameter can be defined as a more compli-
cated linear combination of running waves with equiv-
alent momenta [22]. In a similar way, one can define
zeroth-order approximation of the order parameter aris-
ing as a result of SC pairing with large pair momentum.

In the case of the cuprates, tetragonal symmetry of
CuO; plane results in four crystal equivalent pair mo-
menta: +K and +K', where K' is perpendicular to +K.
It is convenient to form standing waves as symmetric
and antisymmetric (with respect to in-plane reflection
from a line perpendicular to pair momentum) superpo-
sitions for each of two running waves with momenta,
+K and +K’, respectively. Then, the order parameter

in the whole of the Brillouin zone can be written as a lin-
ear combination of these standing waves. Coefficients in
such linear combinations specifies the orbital symmetry
of the order parameter [23].

Coefficients of like signs correspond to extended s-
wave symmetry (the order parameter is invariant with
respect to rotation by /2 about C,-axis). In the case of
coefficients of unlike signs, the order parameter reverses
sign under rotation by /2 and therefore can be referred
to d-wave orbital symmetry.

One can represent the order parameter by any of
four linear combinations (two s-wave and two d-wave)
directly following from the gap equation. The SC ground
state of the system should be expressed by the linear
combination which has a lower free energy.

For solving the gap equation, we present interaction
energy U(k, k'; K) as a sum of screened Coulomb repul-
sion, U,(k,k'), defined in the whole of the domain of
kinematic constraint and EPI induced effective attrac-
tion which is assumed nonzero inside a narrow region
enveloping the FC [15]. Width of this region in the mo-
mentum space is of the order of 2wy, /vg, where wp, and
vp are characteristic Debye frequency and Fermi veloc-
ity normal to the FC, respectively. We assume that at-
tractive contribution into interaction energy is nonzero
if and only if momenta of particles before and after scat-
tering (k and k', respectively) both belong to this region.
Also, we assume that this contribution is independent of
momenta inside the region.

Thus, U (k,k'; K) = U, (k,k’) — V, if both momenta
belong to the region, U (k, k'; K) = U, (k, k') when even
if one of the momenta k and k' belonging to the domain
of kinematic constraint does not belong to the region.
One can assume that U(k,k'; K) = 0 when even if one
of the momenta does not belong to the domain of kine-
matic constraint.

To solve the gap equation numerically, we approxi-
mate the interaction energy by a simple step function of
k = k — k' [13]. Step length in the direction of K is
limited by the length of the nested segment of the FC.
In the direction perpendicular to K, left step at x; cor-
responds to phonon-mediated decrease in energy taking
into account the forward scattering effect [18] whereas
right step at «, reflects the fact that values of the order
parameter turn out to be very small at all points distant
from the FC. Therefore, the order parameter turns out
to be weakly sensitive to k, [13].

We use the electron dispersion that conforms to the
FC observable in hole doped cuprates,

e(k,, k,) = 2ty — 2t(cosk, + cosk,) — 4t'cosk,cosk, —
— 2t"(cos2k, + cos2k,), (2)
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Fig. 1. Symmetric superposition A, (k;K) of running waves with wave vectors =K directed along k,-axis. Left panel — de-
pendence of A,(k;K) on k, at k, = —0.7837 that corresponds to the position of the left vertical nested segment of the FC.
Right panel — topology of A, (k; K); only left half of the Brillouin zone is shown. White lines present the intrinsic zero lines
on which A, (k;K) = 0. White background between the Fermi contours shifted by +£K /2 with respect to initial position of

the FC reflects the kinematic constraint

where t, = 1eV, t = 0.5¢eV, t'/t = —0.3, t"/t = 0.14,
and dimensionless components of momentum k; (i =
= z,y) vary within —7 < k; <.

Recently obtained numerical solution to the gap
equation [13] corresponding to a symmetric superposi-
tion of two running waves is presented in Fig.1 (only
left half of the Brillouin zone is shown) in which the mo-
menta of the running waves £K are chosen as directed
along k,-axis. The order parameter A, (k; K) is charac-
terized by intrinsic system of zero lines intersecting the
FC. One can see that A (k; K) possesses distinct values
only in a vicinity of nested segments of the FC. Similarly,
one can obtain the symmetric superposition A, (k; K')
corresponding to the running waves with £K'.

The symmetric superposition A, (k; K) can describe
a stripe structure of the SC state [13], in particular, an
emergence of the SC order parameter appearing in the
PG state of the cuprates [12]. Recently, Berg et al. [24]
discussed similar striped SC state as a unidirectional
pair-density wave (PDW) phase with periodic real-space
dependence of the order parameter on the center-of-mass
position. The coupling between such a PDW and other
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ordered states was also considered in the framework of
Ginzburg-Landau theory [24].

To obtain the order parameter in the whole of the
Brillouin zone, one should compose either s- or d-wave
linear combination of obtained symmetric superposi-
tions [11],

AB (k) ~ A, (K) + A, (kK'). (3)

The first of them (Agﬂ), corresponding to extended s-
wave orbital symmetry, displays the intrinsic zero lines
only, whereas the second one (A‘(;)), corresponding to
d,_ y2 orbital symmetry, besides the intrinsic zero lines,
displays four straight zero lines (nodal lines) along the
diagonals of the Brillouin zone.

In the cuprates, it seems that such orbital d-wave
nodal lines are consistent with available experimen-
tal facts including angle-resolved photoemission spec-
troscopy (ARPES) data [25]. In particular, it is very
likely that SC gap near the diagonals takes small val-
ues and can even vanish. On the contrary, intrinsic zero
lines, situated close to the FC, hardly ever can be de-
tected directly from ARPES measurements but they un-
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Fig. 2. Antisymmetric superposition A, (k;K) of running waves with wave vectors £K directed along k,-axis. Left panel
dependence of A, (k;K) on k, at k, = —0.783w that corresponds to the position of the left vertical nested segment of the FC.
Right panel — topology of A, (k; K); only left half of the Brillouin zone is shown. White lines present the intrinsic zero lines
on which A, (k;K) = 0. White background between the Fermi contours shifted by +K /2 with respect to initial position of

the FC reflects the kinematic constraint

doubtedly should become apparent in thermodynamical
properties.

In Fig.2, we present new numerical solution to the
gap equation, namely, the order parameter in the form of
antisymmetric superposition of two running waves with
opposite momenta, A, (k; K).

This solution, just as symmetric superposition
A, (k; K), has its own system of intrinsic zero lines. As
one can see from Fig.2, one of such lines turns out to
be parallel to one of the coordinate axes.

Extreme values of both A (k; K) and A, (k; K) are
concentrated in the antinodal regions near nested seg-
ments of the FC. It should be noted especially that, as
results from direct numerical solution to the gap equa-
tion, both symmetric and antisymmetric superpositions
exhibit comparable extreme values.

The order parameter in the whole of the Brillouin
zone should be presented as either s- or d-wave linear
combination of antisymmetric superpositions,

A (k)

a

~A,(5K) A, (5 K'). (4)

The s-wave combination corresponding to plus sign in
Eq. (4), besides some closed intrinsic zero lines, dis-
plays eight straight zero lines parallel both sides and
diagonals of the Brillouin zone. Formally, such an order
parameter can be referred to the so-called g-wave orbital
symmetry discussed by Zhao [26].

The d-wave combination corresponding to minus sign
in Eq. (4), besides some closed intrinsic zero lines, dis-
plays four intrinsic straight zero lines directed along the
sides of the Brillouin zone. These lines can be formally
considered as the nodes of the order parameter with d,,,
orbital symmetry.

It is the pairing interaction that makes the choice
in favor of a certain set of coefficients in Egs. (3)
and (4). For example, near a spin-density-wave in-
stability typical of the cuprate superconductors, an-
tiferromagnetic fluctuation-induced interaction compo-
nent of the pairing interaction, sensitive to band struc-
ture and band filling, gives rise to singlet d-wave pair-
ing with zero center-of-mass momentum. Such an
interaction favors (suppresses) dmLy2 (d,,) channel
[27, 28].
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As follows from Figs. 1 and 2, the amplitudes of two
superpositions, A,(k;K) and A, (k;K), are compara-
ble. Therefore, under certain conditions, the order pa-
rameter with spontaneously broken TR symmetry,

A (k) ~ AL (k) +iAL) (k) (5)

can be expected as a chiral fully gapped ground state of
the system. The components of A(°)(k), phased by /2
with respect to each other, should be formally referred to
d-wave orbital symmetry, d_»_ 2 and d,,, respectively.

It should be noted that, in the problem of triplet pair-
ing with large center-of-mass momentum, superpositions
A,(k;K') and A, (k; K) themselves, can be considered
as the p-wave order parameters corresponding to p, and
p, symmetry, respectively. These superpositions can be
used to form chiral triplet SC state with p, + ip, orbital
symimetry.

Values of the d,, component, Al(f)(k), should be
nonzero for momenta belonging to the nodal region be-
cause of the proximity effect in the momentum space and
a contribution of SC pairing with zero momentum into
biordered SC state [15] (both ignored in Figs.1 and 2).
As a result, a finite SC gap should appear at the points
that correspond to the nodes of the pure dTLy2 state.

Both symmetric and antisymmetric superpositions,
A, and A,, that describe superconducting condensates
of pairs with large total momenta, are doubly degenerate
owing to crystal equivalence of K and K'. These super-
positions are found numerically as the solutions to the
self-consistency equation defined inside the domains of
kinematic constraint corresponding to K and K'. To ob-
tain these solutions, we used a model potential describ-
ing screened Coulomb repulsion and phonon-induced ef-
fective attraction between electrons.

The interactions which are not taken into account by
this computational procedure remove degeneration and
result in a rise of linear combinations Agi) and Al(,i)
corresponding to s-wave (A§+) and A((z+)) and d-wave
(Agf) and A((f)) symmetries, respectively.

We Dbelieve that antiferromagnetic fluctuation-
induced interaction [27, 28] plays crucial role in a
rise of d-wave ordering in the cuprates, especially in
the underdoped region of the phase diagram. Such
paramagnon-exchange-induced interaction results in
m-shifted phase of the order parameter under rotation
by 7/2 in the momentum space. Therefore, one can
think it is the paramagnon exchange that selects one of
the d-wave combinations (A‘(f)), as the ground state of
hole-doped cuprate compounds.

It should be emphasized that antiferromagnetic
fluctuation-induced interaction leads to phase shift 7 in
both cases of dzzfyz and dzy symmetries. Therefore,
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such an interaction should result in topologically stable
state A(©) with d + id ordering, Eq. (5).

The d,, order parameter is often accepted in a sim-
ple form, sink,sink,, that reveals maxima just on the
diagonals. On the contrary, d + id order (5) turns out
be concentrated in antinodal vicinities of the nested seg-
ments of the FC (see Fig.2). Therefore, the smallness
of the d,, component of Ex. (5) in the nodal region can
make it difficult to detect such a gap (for example, using
ARPES technique). It should be noted, however, that
recent ARPES data [29] can be considered as an unam-
biguous evidence in favor to d,»_ y2 -wave-like SC gap in
optimally doped YBay;Cu3O7_s that exhibits a nonzero
minimum of about 12meV along the nodal direction.

Chiral SC ground state with the order parameter (5)
turns out to be topologically nontrivial. Indeed, by con-
tinuous deformation of the parameters of the mean-field
Hamiltonian without opening a gap, this state can be
transformed into that considered by Volovik [30]: both
states are topologically equivalent and should be char-
acterized by the topological invariant N’ = £2.
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