
Pis'ma v ZhETF, vol. 96, iss. 12, pp. 841 { 843 c 2012 December 25Constraints on strongly coupled chameleon �elds from theexperimental test of the weak equivalence principle for the neutronYu.N.Pokotilovski1)Joint Institute for Nuclear Research, 141980 Dubna, RussiaSubmitted 31 October 2012The chameleon scalar �eld is considered as a possible cause of accelerated expansion of the Universe. Thechameleon �eld induces an interaction potential between particle and massive body. Previous experiments withfalling cold neutrons intended to measure the neutron coherent scattering lengths and veri�cation of the weakequivalence principle for the neutron are used to constrain the parameters characterizing the strength of thescalar chameleon �elds.One of the most pressing mysteries in physics andcosmology is discovery of the accelerated expansion ofthe Universe. The nature of this e�ect is not under-stood. Amongst several theoretical schemes proposed toexplain this astronomical observation one is a new cos-mological scalar �eld of the quintessence type [1] dom-inating the present day density of the Universe (recentreviews are for example [2, 3]).Acting on cosmological distances the mass of this�eld should be very small { of order of the Hubble con-stant: ~H0=c2 = 10�33 eV/c2.The scalar �elds appearing in modern string and su-pergravity theories should couple to matter with gravi-tational strength. Direct coupling of light scalar �eldsto matter with a strength of gravitation leads to largeviolation of the equivalence principle. But the experi-mental data yield very strict constraints on such a �elddemanding their coupling to matter to be unnaturallysmall.The particular variant of the scalar �eld coupling tomatter proposed in [4{9] has a form that in result ofself-interaction and interaction of the scalar �eld withmatter the mass of the scalar �eld depends on the localmatter environment.In the proposed theory coupling of scalar �eld to mat-ter is of order as demanded by string theory, but is verysmall on cosmological scales. In high matter density sur-rounding, according to the proposed �eld equations, themass of the �eld is increased, the interaction range isstrongly decreased, and the equivalence principle is notviolated in laboratory experiments for the search for thelong range �fth force. The scalar �eld is con�ned insidethe matter screening its existence to the external world.The chameleon �elds constructed in this way do notcontradict to laboratory tests of the equivalence prin-ciple and the �fth force experimental searches even if1)e-mail: pokot@nf.jinr.ru

these �elds are strongly coupled to matter. In resultof the screening e�ect the laboratory gravitational ex-periments of Galileo-, E�otv�os- or Cavendish-type [10]performed with macro-bodies at macroscopic distancesare unable to set an upper limit on the strength ofthe chameleon-matter coupling. At smaller distances10�7�10�2 cm the new forces can be observed in mea-surements of the Casimir force between closely placedmacro-bodies [11] or in the atomic force microscopy ex-periments. Casimir force measurements may evade tosome degree the screening and probe the interactions ofthe chameleon �eld at the micrometer range despite thepresence of the screening e�ect [9, 12, 13].It was shown in [14] that the chameleon interactionof elementary particles with bulk matter should not bescreened { the chameleon induced interaction potentialof bulk matter with neutron can be in principle observed.It was proposed also in [14] to search for chameleon �eldthrough the energy shift of ultracold neutrons in vicinityof reecting horizontal mirror. From already performedexperiments on observation of gravitational levels of neu-trons the constraints were obtained in [14] on parameterscharacterizing the force of chameleon-matter interaction.Chameleons can also couple to photons. In [15, 16] itwas shown that the chameleon-photon coupling leads tothe afterglow e�ect in a closed vacuum cavity in mag-netic �eld. The continuing GammeV-CHASE [17, 18]and ADMX [19] experiments based on the proposal of[15, 16] are intended to measure (constrain) the couplingof chameleon scalar �eld to matter and photons.In the approach proposed here only chameleon-matter interaction is taken into account not relying onexistence of the chameleon-photon interaction.According to the chameleon scalar �eld theory [4{9]the chameleon e�ective potential isVe�(�) = V (�) + e��=MPl�; (1)�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 11 { 12 2012 841



842 Yu.N.Pokotilovskiwhere V (�) is the scalar �eld potential:V (�) = �4 + �4+n�n ; (2)and � is the local energy density of the environment. Inthese expressions � = (~3c3�d:e)1=4 = 2:4meV is thedark energy scale, �d:e � 0:7 � 10�8 erg/cm3 is the darkenergy density.The chameleon interaction potential of a neutronwith bulk matter (in our consideration Earth's surface)was calculated in [14]:V (z) = � mMPl��2 + np2 �2=(2+n)� z��2=(2+n) == � � 0:9 � 10�21 eV�2 + np2 �2=(2+n)� z��2=(2+n); (3)where � = ~c=� = 82�m.In obtaining constraints on strength of the chameleon�eld expressed by the parameter � we use the results ofexperiments of Koester [20] on measurement of criticalheight of reection of free neutrons falling in the Earth'sgravitational �eld from horizontal liquid lead and bis-muth mirrors.The acceleration of the free atom gmicro in the Earth'sgravitational �eld has been measured by the Stanfordgroup in 1999 with an accuracy 3 � 10�9 [21]. They alsocompared their result with the value of gmacro obtainedat the same laboratory site using a Mickelson interfer-ometric gravimeter. It was found that the macroscopicobject used in this measurement falls with the same ac-celeration to within 7 � 10�9. From thus experimentallycon�rmed universality of free fall it follows that the grav-itational accelerations of free micro-particles (includingneutron) and of bulk matter are equal, and the weakprinciple of equivalence for micro-objects established ex-perimentally with precision better than 10�8.By the free fall in the Earth's gravitational �eld neu-trons gain an energy mgh, and if this energy is equal tothe Fermi potential of the reecting horizontal mirrormgh = ~22m � 4�Nb; (4)where m is the neutron mass, h is the fall's height, N isthe number of nuclei in a unit volume of a mirror mater-ial, b is the coherent scattering length on a bound nucleusof the mirror, h may be considered as a critical heightfor the reection. With measured with high precisionN , g, and h one obtains the neutron scattering lengths.Koester compared neutron scattering lengths mea-sured in the gravitational di�ractometer and those ob-tained by the neutron di�raction and scattering methods

independent of gravity. The result of this comparisonmay be expressed by the factor  expressing the ratio ofthe neutron scattering lengths obtained by two methods: = 1� 2:5 � 10�4.Schmiedmayer [22] used all available data on scatter-ing lengths and took into account all systematic errorsimproving precision almost two times:  = 1�1:7�10�4.The experiments of Koester [20] may be interpretedas precision measurement of the neutron potential en-ergy above the Earth's surface, based on an assumptionthat the neutron coherent scattering lengths do not de-pend on the method of measurement and, therefore, inde-pendent knowledge of the Fermi potential of the mirrorand of the Earth's gravitational acceleration for micro-scopic (and macroscopic) bodies.As was mentioned for macroscopic bodies thechameleon shielding e�ect should eliminate the e�ectof the scalar chameleon �eld on the acceleration of freefall. But presence of additional chameleon-inducedinteraction should change the potential energy of aneutron in vicinity of the Earth's surface.We can use the uncertainty of the Koester's measure-ments [20] and the Schmiedmayer's additional consider-ation [22] to obtain the upper limit of the e�ect of thechameleon �eld on a neutron's free fall acceleration invicinity of the Earth's surface:�V (h) = � � 0:9 � 10�21 eV���2 + np2 �2=(2+n)�h��2=(2+n) � �(gmh): (5)The constraints on parameter � for di�erent n ob-tained from Eq. (5) are shown in Figure. The value of hwas taken 62 cm { the critical height for bismuth.
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Constraints on the parameter � of the chameleon potentialin dependence on n. Allowed region is below the curveExisting constraints on the parameters � and n of thechameleon �eld potential of Eq. (1) are not strong. Fromthe atomic physics it follows [23], that � � 1014. More�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 11 { 12 2012
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