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The nonlinear propagation of dust-acoustic (DA) waves in an obliquely propagating magnetized dusty
plasma, containing Maxwellian distributed ions of distinct temperatures (namely lower and higher temperature
Maxwellian ions), negatively charged mobile dust grains, and Maxwellian electrons, is rigorously investigated
and analyzed by deriving the Zakharov—Kuznetsov equation. It is investigated that the characteristics of the
DA solitary waves (DASWs) are significantly modified by the external magnetic field, relative ion and electron
temperature-ratio, and respective number densities of two population of ions. The implications of the results

obtained from this analysis in space and laboratory dusty plasmas are briefly discussed.

By now, there has been a rapidly growing interest
in understanding different types of collective processes
in dusty plasmas. It is noticed that the presence of
charged dust grains does not only modify the existing
plasma wave spectra [1, 2], but also allows a number
of novel eigenmodes. Rao et al. [3] have first theoreti-
cally shown the existence of extremely low phase veloc-
ity dust-acoustic (DA) waves in an unmagnetized dusty
plasma by using the reductive perturbation technique.
Five years later, Barkan et al. [4] performed a labora-
tory experiment on DA waves, and conclusively verified
the theoretical prediction of Rao et al.

At present, the properties of the DA solitary waves
(DASWs) have attracted a great deal of interest for un-
derstanding the fundamental characteristics of localized
electrostatic perturbations in laboratory and space dusty
plasmas [3,4-11]. The DASWs have been extensively
studied by several authors during last two decades [12—
15]. But the effects of two-temperature ions in dusty
plasma systems were not discussed in those investiga-
tions [12-15]. However, in a recent letter [16], Zhang
and Wang considered the effect of nonthermal ions of
two distinct temperatures and obtained the K-dV equa-
tion. On the other hand, Zhou et al. [17] considered the
same nonthermal plasma model, and derived the modi-
fied K-dV (mK-dV') equation. Moreover, Masud et al.
[18, 19] in 2012 considered two-temperature electrons in
unmagnetized dusty plasma systems and analyzed the
SWs. Recently, Asaduzzaman et al. [20] analyzed the
SWs in a plasma system comprising two-temperature
Maxwellian ions. But, these works [16-19] are limited
to a finite value of the nonlinear coefficient (A4) or consid-
ering the models in unmagnetized plasma environments.
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This indicates that these works are not hold good for
magnetized dusty plasma environments as the authors
of these papers [16-20] have not considered the effects
of magnetic field or obliquness on those SWs. Thus, to
obtain a more generalized work on a dusty plasma (con-
sisting of extremely massive, highly negatively charged
mobile dust particles, Boltzmann distributed ions of dis-
tinct temperatures, and non-inertial electrons), we have
derived the Zakharov—Kuznetsov (ZK) equation, and an-
alyzed the SWs both numerically and analytically in this
letter.

We consider the nonlinear propagation of collision-
less DA waves in a magnetized dusty plasma consist-
ing of negatively charged mobile dust, two-temperature
Maxwellian ions of temperatures T;; and T2, and non-
inertial electrons having finite temperature T,, where
T. >» T;» >» T;;. Thus, at equilibrium, n;19 + ni20 =
= neo + Zgngo, where n;1p and n;zo are the densities of
the lower and higher temperature ions respectively, at
equilibrium. Z; is the number of electrons residing onto
the dust grain surface, and neo (ngo) is the equilibrium
density of the electron (dust). The nonlinear dynamics
of the obliquely propagating DA waves in such a dusty
plasma system is governed by
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where ng is the dust particle number density normalized
by its equilibrium value ng4g, ugq is the dust fluid velocity
normalized by Cyq = (ZgkgTi1 /ma)'/?, ¢ is the wave po-
tential normalized by kpTj1 /e, the time variable ¢ is nor-
malized by w;dl = (ma/4mna0Z2e*)'/?, and the space
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variable is normalized by Ap,, = (kpTi1 /4mna0Zge?) /2.
Here, 01 = Tu/Ti2, 02 = Tu/Te, @ = wed/Wpds
pi1 = niro/Zanao, iz = Nizo/Zanao, b = Neo/ZiNdo =
= w1 + piz — 1, kp is the Boltzmann constant, and e is
the magnitude of the electron charge.

To study small but finite amplitude electrostatic
DASWs in the dusty plasma under consideration, one
usually constructs a weakly nonlinear theory [21], and
uses a scaling of the independent variables through the
stretched coordinates [21, 22]

X = €'/?g, (4)
Y = 61/2ya (5)
7= ez~ V), (6)
T = e3/2t, (7

where € is a small parameter measuring the weakness of
the dispersion, Vj, is the phase speed normalized by the
dust-acoustic speed (Cy). It may be noted here that X,
Y, and Z are all normalized by the Debye radius (Aps,),
and 7 is normalized by the ion plasma period (w;dl).

The perturbed quantities ng, w4z, Udy, 4., and ¢
can be expanded along with their equilibrium values as
[21, 23-25]

ng=1+ en(l) + ezn(2) - (8)
Udy = €/ 2uy + € u(z) - (9)
wa = €32y (1) @ 4. .. 1
dy = € + €2 Ugy + (10)
Ug, = eul(iz) + e2ul(,22) +ey (11)
¢=epM) + 29 + ... (12)

Now, using (4)-(7) and (8)—(12) into (1)—(3), one
can obtain the first order continuity equation, the z-
component of the momentum equation, and Poisson’s
equation which, after simplification, yield
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Equation (15) is the phase speed of the DA waves prop-
agating in the magnetized dusty plasma under consider-
ation.

The first order z- and y-components of the momen-
tum equation can be written as

W _ _10¢W
udz - a BY ’ (16)
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U = X (1)

The equations (16) and (17) respectively, represent the
z- and y-components of the dust electric field drifts.
These equations are also satisfied by the second order
continuity equation.

Again, using (4)—(7) and (8)—(12) into (1)—(3), and
eliminating ul(ilz)’y, the next higher order z- and y-compo-
nents of the momentum equation, and Poisson’s equation
can be found as

(2) Vo B2¢>
fae =752 azaX (18)
Uiy = o3 9oy (19)
¢t 9%p) 92
ax2 " av? | aze
_ 73 (1)y2 2)
—u[p1+ 2(¢ )]+p2+n (20)

where p; = 1+ 026 and ps = pi1 ¢® — pir (V)2 /2 +
+ pi2010?) — pina?(¢M)? /2. Equations (18) and (19),
respectively, denote the z- and y-components of the dust
polarization drifts. Now, following the same procedure
one can obtain the next higher order continuity equation,
and z-component of the momentum equation. Using
these new higher order equations along with (13)—(20),

@ .2

one can eliminate n;’, u;,’, and #?, and can finally

obtain
) oo 1 9 T8
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where
A=V}, (22)
B= 1 2 1 23
2 Mi1 + Hz201 HOo V; ) ( )

1

D=1+ ~E (24)

Equation (21) is the ZK equation describing the
nonlinear propagation of the obliquely propagating
DA waves in a magnetized dusty plasma with two-
temperature Maxwellian distributed ions. To study the
properties of the SWs propagating in a direction making
an angle § with the Z-axis, i.e. with the external mag-
netic field and lying in the (Z—X) plane, the coordinate
axes (X, Z) are rotated through an angle §, keeping the
Y -axis fixed. Thus, we transform our independent vari-
ables to

p=Xcosd — Zsind, n=Y,
&= Xsind + Z cosd, T=t. (25)
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This transformation of these independent variables al-
lows us to write the ZK equation in the form

a¢ Do 08D e g
+ 610 9€ + 62 o€ + 03¢ Bp +
33¢(1) 33 33 33V
+ 04 20" +556§26p +566§6p2 +576§6’I72 +
33
. A 92
Sapanz 0) ( 6)
where
61 = ABcosé,
0y = %A(cos3 8 + Dsin’ § cos §),
63 = —ABsiné,

1
0y = —EA(sin3 8 + Dsind cos® §),
0 =A [D(sin&cos2 0 — %sin3 0) — gsinécos2 5] , (27)
.2 L 3 3.2
d0¢ = —A |D(sin” § cosd — 5 cos 0) — 5 sin dcosd|,

1
o7 = §AD cosd,

53 — % ADsiné.

It is now necessary to look for a steady state solution of
this ZK equation in the form

oM = ¢o(2), (28)
where
Z = ¢ — Upt,

in which Up is a constant speed normalized by the pos-
itive DA speed (Cy). Using this transformation the ZK
equation can be written in steady state form as

d d d?
—Uoﬂ +51¢0 ¢ dZ¢3?

0
)
a7 + 02

~0. (29)

Now, using the appropriate boundary conditions, viz.
D = 0, (dpM/dz) — 0, (¢ /dZ?) — 0 as
Z — o0, the solitary wave solution of this equation
is given by

$0(Z) = Ymsech’® (r2), (30)

where 9, = 3Up/d1 is the amplitude and k = /U, /462
is the inverse of the width of the solitary waves. As
Up > 0, it is clear from (21), (23), and (26) that de-
pending on the sign of B, the SWs will be associated
with only positive potential (¢, > 0).
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Fig. 1. (Color online) Variation of the solitary profiles with
relative ion fluid densities (i.e., u;2) for different values of
pi1. The upper (blue) curve is for u;1 = 0.8, the middle
(red) one is for p;; = 0.7, and the lower (green) one is for
pi1 = 0.6, for § = 18°, o1 = 0.04, and o2 = 0.06
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Fig.2. (Color online) Variation of the amplitudes of soli-
tary waves with p;; for different values of o;. The first
(blue) curve is for o1 = 0.055, second (black) one is for
o1 = 0.05, third (red) one is for o1 = 0.045, and fourth
(green) one is for o1 = 0.04, for § = 18°, and o2 = 0.06

Fig.1 represents the SW profiles for different values
of the relative ion-number densities (u;1), and Fig.2
indicates the variation of amplitudes of the positive po-
tential DASW for different values of the temperature-
ratio (o1). Consequently, Fig.3 describes the variation
of widths (A) of the DASWs with § for different values
of the frequency-ratio ().

The effects of obliquness, magnetic field, and two-
temperature ions on electrostatic solitary structures,
which have been found to exist in a hot magnetized
dusty plasma with positive potential only, are inves-
tigated rigorously by using the reductive perturbation
method which is only valid for small but finite ampli-
tude limit but not valid for large § which makes the wave
amplitude infinitely large. According to our present in-
vestigation, we have found that the amplitudes of the
DASWs gradually increases with temperature-ratio o7 .
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Fig.3. (Color online) Variation of the width (A) of the
solitary waves with § for different values of a. The up-
per (red) curve is for a = 0.25, the middle (black) one is
for & = 0.3, and the lower (blue) one is for a = 0.35, for
Mil = 0.6, MHi2 = 0.4, g1 = 0.04, and o2 = 0.06

On the other hand, the height of the DASW profile also
varies proportionally with relative ion-number densities
(ni1 and pi2) and with reletive electron number density
() for definite values of the temperature ratios o; and
o3. The effect of variation of the angle § on the widths
(A) of the SWs is that the width of these SWs increases
with § for its lower range and decreases for its higher
range. It should be pointed out that for large angles the
assumptions that the waves are electrostatic is no longer
valid, and we should look for fully electromagnetic struc-
tures. Moreover, it is also noted that with the increase
of frequency-ratio «, the amplitudes become relatively
spiky (Fig. 3).

We have analyzed the nature and basic characteris-
tics of the obliquely propagating DASWSs in a magne-
tized dusty plasma system consisting of bi-Maxwellian
ions of distinct temperatures, negatively charged mo-
bile dust, and non-inertial electrons. Our present re-
sults can be very effective for understanding the localized
electrostatic disturbances in space [18,19, 22, 26, 27] and
laboratory magnetized dusty plasmas [16, 17,22, 27-30],
where two population of plasma species (viz. thermal
ions or electrons) can dominate the wave dynamics.

To conclude, the time evolution and stability analy-
sis of these solitary structures are also problems of great
interest but beyond the scope of the present work.
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