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Properties of rogue waves in the basin of intermediate depth are discussed in comparison with known pro-

perties of rogue waves in deep waters. Based on observations of rogue waves in the ocean of intermediate depth

we demonstrate that the modulational instability can still play a significant role in their formation for basins

of 20 m and larger depth. For basins of smaller depth, the influence of modulational instability is less probable.

By using the rational solutions of the nonlinear Schrödinger equation (breathers), it is shown that the rogue

wave packet becomes wider and contains more individual waves in intermediate rather than in deep waters,

which is also confirmed by observations.
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Abnormally high waves unexpectedly appearing

for a short time at the sea surface (rogue waves) rep-

resent the hot topic in science in the last two decades.

The physical mechanisms of their formation are de-

scribed in [1–6] and can be highlighted as: i) modu-

lational instability (Benjamin–Feir instability), ii) geo-

metrical and dispersive focusing, iii) wave-current and

wave-bottom interaction, and iv) wind action. Initially

known for water waves, later on rogue waves were dis-

covered in different media; their numerous examples are

given in the special issue of EPJ [7]. At the same time,

in the last years the effect of modulational instability

is considered to be the main mechanism of rogue wave

formation in all media, and the nonlinear Schrödinger

equation (NLS) and its generalizations – to be the ba-

sic model. Its rigorous solutions, so called Peregrine–

Kuznetsov–Ma–Akhmediev breathers possess all rogue

wave properties, such as sudden appearance and dis-

appearance in the homogeneous wind wave field, ab-

normal amplification in 2–3 times within a short time

interval [8–10]. Due to the integrability of the nonlin-

ear Schrödinger equation it was possible to find so-

lutions for super rogue waves, whose amplitude could

be 10 times larger than of background waves [11, 12].

These waves were observed under laboratory conditions

in wave flumes [12–18], in nonlinear fibres [19] and in
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multicomponent plasma [20]. It has been shown that

modulational instability can result in rogue wave forma-

tion in random wave fields [21]. There have also been

attempts to describe the formation of observed rogue

waves in the deep sea by the nonlinear Schrödinger equa-

tion [15, 22, 23].

In the last years several catalogues and collec-

tions of observed rogue waves in the ocean have

been created [24–28]. These collections include descrip-

tions of rogue waves observed in different regions

of the World Ocean both in its deep parts, in the coastal

zone and at the coast [3, 26, 27]. Closer to the coast, the

effect of modulational instability in the field of unidirec-

tional waves vanishes [3, 29]. Therefore, in these regions,

other mechanisms of rogue wave formation should dom-

inate.

However, since measurements of waves are usually

conducted in the point (time series record), which does

not give enough information to the existing analytical

models, the latter cannot describe the mechanism of

each particular observed rogue wave. As the result, the-

ory and measurements go “in parallel”. In this regard

the role of additional observation and, in particular,

eye-witness reports starts to be very important, since

it gives valuable information, which is needed to define

the mechanism of the observed event. Thus, the forma-

tion of rogue waves off the south-western coast of Africa

was explained as a result of wave interaction with the
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strong Agulhas current [30]. Rogue waves recorded in

the Caribbean Sea in October 2005 and in the Mediter-

ranean Sea (Louis Majesty accident) in March 2010 are

associated with the abrupt change in wind direction

and wave interaction with the swell [31, 32]. The model

used by [32] is based on a coupled system of nonlin-

ear Schrödinger equations, which allows modulational

instability. There is no doubt that the criterion of mod-

ulation instability is fulfilled in the open sea. However,

according to the recently published catalogue of rogue

waves [26, 27], rogue waves are encountered in any part

of the ocean, both in deep/shallow waters and along the

coast. It is therefore interesting to estimate the number

of rogue waves associated with modulational instability

at different water depths.

Here, based on the data by [26, 27] at different wa-

ter depths we try to find indirect proofs of feasibility of

modulation instability mechanism. For this we analyze

the events reported in [26, 27] and check if they meet the

criterion of modulation instability. The considered data

contain 22 rogue events, which occurred in 2006–2010

at the water depth less than 50 m. The reported rogue

waves are satisfied to the amplitude criterion, according

to which their heights are at least twice larger than the

significant wave height Hs (average of 1/3 of the highest

waves). Wave periods are estimated from altimeter data

following the algorithm suggested by [33].

The known criterion for modulational instability in

the field of unidirectional water wave is

kh > 1.363, (1)

where h is the water depth and k is the carrier wave

number [29, 35, 39, 40]. In practice, the wave frequency

ω is often known and the carrier wave number k can be

found from the linear dispersion relation

ω =
√

gk tanh(kh). (2)

Using the approximation formula for wave number (ac-

curacy 1%) [34]

k2 =
ω2

ghG(α)
+

ω4

g2
,

G = 1 + 0.6522α+ 0.4622α2 + 0.0864α4 + 0.0675α5,

α = ω2h/g,

(3)

the modulational instability criterion can be expressed

through measured characteristics T and h

T <

√

4π2h

a0g
, (4)

where a0 ≈ 1.195 is found from
√

α

G(α) + α2
= 1.363. (5)

Fig. 1 demonstrates the wave periods and water

depths of 22 rogue waves occurred in 2006–2010 and

Fig. 1. Rogue wave period plotted against the water depth

of their occurrence; black solid line corresponds to Eq. (4)

dashed line corresponds to Eq. (4). All data-points

above the dashed line correspond to the modulationally

stable waves and all data-points below the dashed line

correspond to modulationally instable; reported rogue

waves are distributed almost equally among them. At

the same time, the possible definition of the critical wa-

ter depth of about 20 m separating waves in deep and

shallow waters based on the modulational instability cri-

terion Eq. (1) also follows from Fig. 1. As known, the

actual border between deep and shallow water depends

on wind wave parameters and may be at different wa-

ter depth. However, our analysis demonstrates that for

all considered observed rogue events it only slightly de-

viates from 20 m. An increase in the rogue wave data

could help to make this value more precise.

Fig. 2, where the dependency of the parameter kh on

the water depth is plotted, is even more indicative. The

Fig. 2. Division of rogue events by the modulational insta-

bility criterion with respect to the water depth

black solid line here corresponds to the critical value of

modulational instability criterion. It can be seen that

waves are modulationally stable at water depths be-

low 20 m; however, even for larger water depths (such
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as 40 m) the values of kh are relatively small and are

close to the critical value. At the same time, it is hard

to find a similar criterion for the wave period, though

most of waves with periods larger than 10 s (so called

swell) are modulationally stable at water depths below

50 m. The mechanisms of formation of such modulation-

ally stable long rogue waves are described in [5].

In addition, based on the available data-

collection [26], the number of observed rogue waves in

the wave packet can also be connected to the parameter

kh. In most of cases (16 cases out of 22) only single

rogue wave is observed for both deep and shallow

water values of kh. Practically, all rogue wave groups

(5 cases), a phenomenon known as “The Three Sisters”,

are observed in shallow water, which can be connected

to the diminishing role of the dispersion, which leads

to the enlargement of the wave packet as the whole.

The dynamics of weakly-nonlinear wave packets in

fluid of an arbitrary depth is described by NLS equation

[29, 35, 39, 40]

i
∂A

∂t
+ µ

∂2A

∂x2
+ γ|A|2A = 0, (6)

where A is a complex wave amplitude, and µ and γ are

coefficients of dispersion and nonlinearity respectively,

and they have a meaning of the coefficients of the Tay-

lor series of the nonlinear dispersion relation [35]. Note,

that a variable-coefficient NLS equation can also be de-

rived for a variable depth [36]. It is important that the

wave frequency (wave period) does not change during

wave propagation from deep water to shallow, while

wave number changes according to the dispersion rela-

tion Eq. (2). That is why we base our analysis on wave

frequency and corresponding parameter α (Eq. (3)) in-

stead of kh. So, for a fixed central frequency ω, both

coefficients can be presented as a product of the cor-

responding coefficient of NLS equation in deep waters

(µ∞ and γ∞) and the correction, related to the finite-

ness of the water depth (M and G):

µ = µ∞M(kh), µ∞ =
1

2

∂2ω

∂k2
= −

1

8

g2

ω3
, (7)

M = [σ − kh(1− σ2)]2 + 4k2h2σ2(1 − σ2), (8)

γ = γ∞G(kh), γ∞ = −
ωk2

2
= −

ω5

2g2
, (9)

G =
1

4σ4

{

1

c2gr − gh
[4c2ph + 4cphcgr(1 − σ2) +

+ gh(1− σ2)2] +
1

2σ2
(9− 10σ2 + 9σ4)

}

, (10)

here σ = tanh(kh), cph and cgr are the phase and group

velocities of the linear surface gravity waves for ω and

k = k(ω), and x is the running coordinate moving with

the group velocity. The behavior of corrections M and

G with respect to the parameter α, defined in Eq. (3),

is demonstrated in Fig. 3. The dispersion correction

Fig. 3. Corrections to the coeffcient of dispersion M and

nonlinearity G with respect to the parameter α (Eq. (3)),

α ≈1.195 corresponds to the modulational instability limit

Fig. 4. Coefficients BL and BT versus parameter α;

α ≈ 1.195 corresponds to the modulational instability

limit

changes nonmonotonically reaching its maximum value

of 1.787 for kh = 1.718. It is equal to 1 in deep waters

and is zero in shallow waters. The correction to non-

linearity coefficient changes monotonically and tends to

1 in deep waters and to minus infinity in shallow wa-

ter. Note, that the wave becomes more linear while ap-

proaching the modulational instability limit: its non-

linearity decreses and its dispersion is still high and

close to its maximum value. The dispersion coefficient

µ is always negative, while σ changes its sign from

negative to positive passing though the critical value

of kh [35, 39, 40].

For the modulational instability regime (focused

regime), Eq. (6) can be reduced to its canonical form

i
∂u

∂τ
+

∂2u

∂y2
+ 2|u|2u = 0, (11)

where y = kx, u = A
√

γ/2µk2, τ = −µk2t.

The existence of rogue waves within NLS Eq. (11)

have been intensively studied [3, 7, 37]. Here, the ma-

jor role in demonstration of the rogue wave formation
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Fig. 5. The Peregrine breather at the background of the carrier wave with the period 6 s and amplitude A0 = 3m for (a) α = ∞

(kh = ∞); (b) α = 5 (kh = 5); (c) α = 1.93 (kh = 2); (d) α = 1.48 (kh = 1.6)

plays the family of rational or multi-rational solutions

(breathers), which allow different shapes of rogue waves

and significant rogue wave amplification against the

background waves. One of the most famous prototypes

of the rogue wave is the Peregrine breather (here ex-

pressed in original variables)

A(x, t) = A0

[

−1 +

+
4− 8iγA2

0t

1 + 2γA2
0x

2/µ+ 4γ2A4
0t

2

]

exp(−iγA2
0t). (12)

Important breather characteristics, the number of waves

in space nL and the number of waves in time nT , can

be presented as

nL ∼ kL ∼
BL

ε
, nT ∼ ωT ∼

BT

ε2
, ε = kA, (13)

where ε is the wave steepness and coefficients BL and

BT represent corrections for the finiteness of the water

depth

BL =
1

σ2

√

M

G
, BT =

1

G2σ2
. (14)

Both coefficients are equal to 1 in the deep water and

tend to infinity while approaching the limit of modula-

tional instability (Eq. (5)) with an especially intensive

increase in the duration of the breather (Fig. 4). It fol-

lows from Eq. (13) that even in deep waters the number

of waves in time is larger than in space (ε < 1). However,

the shallow water makes this difference even stronger.

It is demonstrated in Fig. 5 for deep water (α = ∞,

kh = ∞) and for intermediate water (α = 5, 1.93, 1.48

and the corresponding kh = 5, 2, and 1.6) conditions.

The last value of kh corresponds to the breather for the

conditions of the famous 26-meter Draupner wave at the

water depth of 70 m, whose record has been shown and

analyzed in many works (see, for example [3, 6, 38]). The

breather for the Draupner wave conditions (rather prob-

able for offshore constructions) is wider than the one

in deeper waters (3.5 times in duration and 2.5 times

in length with respect to the level A/A0 = 2), which

should be accounted in prognostic simulations of ex-

treme waves. Note that for a fixed wave period and am-

plitude, the number of individual waves within breather

increases with a decrease in kh. As a result, the rogue

event in the shallow water region contains more haz-

ardous waves rather than in deep water region, which

has been confirmed by the observations.

The main conclusions from this analysis are straight-

forward: i) it is shown that the modulational instabil-

ity can still play an important role in rogue wave for-

mation in intermediate waters up to 20 m water depth;

and ii) the rogue wave packet in the basin of intermedi-

ate depth becomes wider and contains a larger number

of individual waves rather than in deep water, which is

also supported by observations. The same conclusions

should be also valid for super rogue waves considered

in [12] for deep water conditions.
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